




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第8章
人工神经网络方法2021/8/231精品PPT模板本讲大纲:人工神经网络的基本概念误差反向传播(BP)神经网络2021/8/232精品PPT模板8.1人工神经网络的基本概念从数学和物理方法以及信息处理的角度,对人脑神经网络进行抽象,并建立某种简化模型,称为人工神经网络。应用领域:模式识别系统辨识预测预估数据挖掘经济学……2021/8/233精品PPT模板8.1人工神经网络的基本概念
人工神经网络在本质上是由许多小的非线性函数组成的大的非线性函数,反映的是输入变量到输出变量间的复杂映射关系。先给出单个人工神经网络的一般模型描述:2021/8/234精品PPT模板8.1人工神经网络的基本概念先来看一个单一输入的神经元模型输入变量:x1连接权重:w1激活函数:f(·)
w1x1f(·)
w1x12021/8/235精品PPT模板8.1人工神经网络的基本概念
2021/8/236精品PPT模板8.1人工神经网络的基本概念单极sigmoid函数2021/8/237精品PPT模板8.1人工神经网络的基本概念双曲函数2021/8/238精品PPT模板8.1人工神经网络的基本概念增加激活阈值后的神经元模型输入变量:x1连接权重:w1激活函数:f(·)
w1x1f(·)
w1x1-θ-1小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神经元的净输入和输出分别是多少?x1w1θ10.20.42021/8/239精品PPT模板8.1人工神经网络的基本概念当输入增加时的神经元模型输入变量:x1,x2连接权重:w1,w2激活函数:f(·)
w1x1f(·)
w1x1+w2x2-θ-1w2x2小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神经元的净输入和输出分别是多少?x1x2w1w2θ100.20.40.42021/8/2310精品PPT模板8.1人工神经网络的基本概念
w1w2wmxmx2x1............f(·)
-1
2021/8/2311精品PPT模板8.1人工神经网络的基本概念当多个神经元组合起来时,人工神经网络的总体结构如下:输入层隐
藏
层-1-1-1∑
f∑
f........................xmx2x1........................y1y2yn∑
f∑
f∑
f∑
f∑
f∑
f∑
f-1输出层............2021/8/2312精品PPT模板8.1人工神经网络的基本概念当层数增加时的神经元模型输入变量:x1,x2连接权重:w1,w2激活函数:f(·)
w1x1f(·)
w1x1+w2x2-θ-1w2x2小练习:请你算一算,当初始输入、权重和激活阈值为如下数值时,该神经元的净输入和输出分别是多少?x1x2w1w2θ100.20.40.42021/8/2313精品PPT模板8.1人工神经网络的基本概念x1x2x3w14w15w24w25w34w35w46w56θ4θ5θ61010.2-0.30.40.1-0.50.2-0.3-0.20.4-0.2-0.1123456x1x3x2w14w15w24w25w34w35w46w56θ4θ5θ6初始输入、权重和偏倚值小练习:请你算一算,各节点的净输入和净输出分别是多少?2021/8/2314精品PPT模板8.1人工神经网络的基本概念单元j净输入Ij净输出Oj123456x1x3x2w14w15w24w25w34w35w46w56θ4θ5θ6净输入和输出的计算-0.70.10.3320.525-0.1050.47440.2+0-0.5-0.4=-0.75-0.3+0+0.2+0.2=0.16-(0.3)(0.332)-(0.2)(0.525)+0.1=-0.1051/(1+e0.7)=0.3321/(1+e-0.1)=0.5251/(1+e0.105)=0.4742021/8/2315精品PPT模板8.1人工神经网络的基本概念思考:
如果想要让神经网络的期望输出尽可能接近“1”这个数值,请问应该调整网络的哪些参数?2021/8/2316精品PPT模板8.1人工神经网络的基本概念123456x1x3x2w14w15w24w25w34w35w46w56θ4θ5θ6x1x2x3w14w15w24w25w34w35w46w56θ4θ5θ61010.192-0.3060.40.1-0.5080.194-0.261-0.1380.408-0.194-0.218初始输入、权重和偏倚值小练习:若将各权值与阈值换成以上各值,各节点的净输入和净输出分别是多少?2021/8/2317精品PPT模板8.1人工神经网络的基本概念单元j净输入Ij净输出Oj123456x1x3x2w14w15w24w25w34w35w46w56θ4θ5θ6净输入和输出的计算-0.5220.0820.62760.4795-0.18420.545940.192+0-0.306-0.408=-0.5225-0.306+0+0.194+0.194=0.0826-(0.3)(0.6276)-(0.2)(0.4795)+0.1=-0.18421/(1+e-0.522)=0.62761/(1+e-0.1)=0.47951/(1+e-0.1842)=0.5459与0.474相比更接近“1”了2021/8/2318精品PPT模板8.1人工神经网络的基本概念神经网络运算的难点之一:如何高效地确定各个连接权值W与激活阈值θ
自动确定权值与阈值的过程称为神经网络学习(训练)。2021/8/2319精品PPT模板8.1人工神经网络的基本概念神经网络的学习方式:监督学习非监督学习激励学习2021/8/2320精品PPT模板8.2误差反向传播(BP)神经网络反向传播算法分二步进行,即正向传播和反向传播。1.正向传播输入的样本从输入层经过隐单元一层一层进行处理,通过所有的隐层之后,则传向输出层;在逐层处理的过程中,每一层神经元的状态只对下一层神经元的状态产生影响。在输出层把现行输出和期望输出进行比较,如果现行输出不等于期望输出,则进入反向传播过程。2.反向传播反向传播时,把误差信号按原来正向传播的通路反向传回,并对每个隐层的各个神经元的权系数进行修改,以望误差信号趋向最小。2021/8/2321精品PPT模板8.2误差反向传播(BP)神经网络
2021/8/2322精品PPT模板8.2误差反向传播(BP)神经网络单元j计算误差Errj123456x1x3x2w14w15w24w25w34w35w46w56θ4θ5θ6每个节点输入端误差Errj的计算Err4=-0.0087Err5=-0.00650.3320.525Err6=0.13111-0.4744[0.332•(1-0.332)]•(0.1311)•(-0.3)5[0.525•(1-0.525)]•(0.1311)•(-0.2)6[0.474•(1-0.474)]•(1-0.474)-0.0087-0.00650.13110.1311•w460.1311•w562021/8/2323精品PPT模板8.2误差反向传播(BP)神经网络权重或偏差新值w46-0.3+(0.9)(0.1311)(0.332)=-0.261w56-0.2+(0.9)(0.1311)(0.525)=-0.138w140.2+(0.9)(-0.0087)(1)=0.192w15-0.3+(0.9)(-0.0065)(1)=-0.306w240.4+(0.9)(-0.0087)(0)=0.4w250.1+(0.9)(-0.0065)(0)=0.1w34-0.5+(0.9)(-0.0087)(1)=-0.508w350.2+(0.9)(-0.0065)(1)=0.194θ6-0.1+(0.9)(0.1311)(-1)=-0.218θ5-0.2+(0.9)(-0.0065)(-1)=-0.194θ40.4+(0.9)(-0.0087)(-1)=0.408权重和偏倚更新的计算2021/8/2324精品PPT模板参考资料(美)韩家炜,(美)坎伯(Kamber,M.),等.数据挖掘:概念与技术,第3版[M].机械工业出版社,2012.张兴会.数据仓库与数据挖掘技术[M].清华大学出版社,2011.2021/8/2325精品PPT模板9、人的价值,在招收诱惑的一瞬间被决定。03-2月-2303-2月-23Friday,February3,202310、低头要有勇气,抬头要有低气。***2/3/20234:30:30PM11、人总是珍惜为得到。03-2月-23**Feb-2303-Feb-2312、人乱于心,不宽余请。***Friday,February3,202313、生气是拿别人做错的事来惩罚自己。03-2月-2303-2月-23**03February202314、抱最大的希望,作最大的努力。03二月2023**03-2月-2315、一个人炫耀什么,说明他内心缺少什么。。二月23*03-2月-23*03February202316、业余生活要有意义,不要越轨。**2/3/202317、一个人即使已登上顶峰,也仍要自强不息。***03-2月-23谢谢大家2021/8/2326精品PPT模板9、人的价值,在招收诱惑的一瞬间被决定。03-2月-2303-2月-23Friday,February3,202310、低头要有勇气,抬头要有低气。***2/3/20234:30:30PM11、人总是珍惜为得到。03-2月-23**Feb-2303-Feb-2312、人乱于心,不宽余请。***F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CASMES 19-2022中小企业合规管理体系有效性评价
- T/CAPE 10002-2018设备管理体系实施指南
- java基础总结面试题及答案
- fuwuy考试题及答案
- 骨干集训面试题及答案
- sed考试题及答案
- 基础算法面试题及答案
- 服务单位面试题及答案
- 海军战术考试题及答案
- 动物医师面试题及答案
- 通用造价35kV~750kV线路(国网)课件
- 工贸企业有限空间作业场所安全管理台账
- 国际财务管理教学ppt课件(完整版)
- DB33∕T 715-2018 公路泡沫沥青冷再生路面设计与施工技术规范
- 彩色简约鱼骨图PPT图表模板
- 光引发剂的性能与应用
- PID控制经典PPT
- 图像处理和分析(上册)课后习题答案(章毓晋)
- 油田注入水细菌分析方法+绝迹稀释法
- 医师处方权申请
- 简易充电器课程设计
评论
0/150
提交评论