中考第23题对题练_第1页
中考第23题对题练_第2页
中考第23题对题练_第3页
中考第23题对题练_第4页
中考第23题对题练_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

温州中考第23题对题练1.为响应新泰市“创建全国文明城市”的号召,某单位不断美化环境,拟在一块矩形空地上修建绿色植物园,其中一边靠墙,可利用的墙长不超过18m,另外三边由36m长的栅栏围成.设矩形ABCD空地中,垂直于墙的边,面积为(如图).(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)若矩形空地的面积为,求x的值;此时是否是矩形空地面积最大值?若不是,请求出矩形ABCD空地面积的最大值.2.在校园嘉年华中,九年级同学将对一块长20m,宽10m的场地进行布置,设计方案如图所示.阴影区域为绿化区(四块全等的矩形),空白区域为活动区,且4个出口宽度相同,其宽度不小于4m,不大于8m.设出口长均为x(m),活动区面积为y(m2).(1)求y关于x的函数表达式;(2)当x取多少时,活动区面积最大?最大面积是多少?(3)若活动区布置成本为10元/m2,绿化区布置成本为8元/m2,布置场地的预算不超过1850元,当x为整数时,请求出符合预算且使活动区面积最大的x值及此时的布置成本.3.如图,某小区有一块靠墙(墙的长度不限)的矩形空地ABCD,为美化环境,用总长为100m的篱笆围成四块矩形花圃(靠墙一侧不用篱笆,篱笆的厚度不计).(1)若四块矩形花圃的面积相等,求证:AE=3BE;(2)在(1)的条件下,设BC的长度为xm,矩形区域ABCD的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.4.如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m)围成中间隔有一道篱笆的矩形花圃,设花圃的宽AB为xm,面积为Sm2.(1)求S与x的函数表达式.(2)如果要围成面积为45m2的花圃,AB的长是多少米?(3)能围成面积为50m2的花圃吗?若能,请说明围法;若不能请说明理由.5.某养鸡专业户用篱笆及一面墙(该墙可用最大长度为36米)围成一个矩形场地ABCD来供鸡室外活动,该场地中间隔有一道与AB平行的篱笆(EF),如图,BE、EF上各留有1米宽的门(门不需要篱笆),该养鸡专业户共用篱笆58米,设该矩形的一边AB长x米,AD>AB,矩形ABCD的面积为s平方米.(1)求出S与x的函数关系式,直接写出自变量x的取值范围;(2)若矩形ABCD的面积为252平方米,求AB的长.6.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?6.某工厂制作A,B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.7.随着我市“明眸皓齿”工程的启动实施,教室照明越来越受到重视.为满足市场需求,某照明公司生产销售防眩光LED格栅灯,已知该灯具的成本为70元/套,销售单价在82元到100元(含82元,100元)浮动.根据市场销售情况可知:当销售单价为100元/套时,日均销量为600套;销售单价每降低1元,则日均销量增加50套.(1)请直接写出该灯日均销量y(套)与销售单价x(元/套)之间的函数关系式.(2)当该灯具的销售单价定为多少元时,该照明公司获得的日销售利润w最大?最大利润为多少元?(3)该公司决定每销售一套灯具,就捐赠m元给希望工程.若在每套捐出m元后,公司的日销售利润最少为15000元,求m的值.8.已知某厂以t小时/千克的速度匀速生产某种产品(生产条件要求0.1<t≤1),且每小时可获得利润60(﹣3t+5(1)某人将每小时获得的利润设为y元,发现t=1时,y=180,所以得出结论:每小时获得的利润,最少是180元,他是依据什么得出该结论的,用你所学数学知识帮他进行分析说明;(2)若以生产该产品2小时获得利润1800元的速度进行生产,则1天(按8小时计算)可生产该产品多少千克;(3)要使生产680千克该产品获得的利润最大,问:该厂应该选取何种生产速度?并求此最大利润.9.某学具专卖店试销一种成本为60元/套的学具.规定试销期间销售单价不得低于成本单价,且获利不得高于成本价的20%,该专卖店每天的固定费用是100元.试销发现,每件销售单价相对成本提高x元(x为整数)与日平均销售量y件之间符合一次函数关系,且当x=10时,y=40;x=25时,y=10.(1)求y与x之间的关系式;(2)该学具专卖店日平均获得毛利润为w元(毛利润=利润﹣固定费用),求当销售单价为多少元时,日平均毛利润最大,最大日平均毛利润是多少元?10.某车间生产以甲、乙两种水果为原料的某种罐头,在一次进货中得知,花费1.8万元购进的甲种水果与2.4万元购进的乙种水果质量相同,乙种水果每千克比甲种水果多2元.(1)求甲、乙两种水果的单价;(2)车间将水果制成罐头投入市场进行售卖,已知一听罐头需要甲乙水果各0.5千克,而每听罐头的成本除了水果成本之外,其他所有成本是水果成本的57(3)若想使得该种罐头的销售利润每天达到6万元,并且保证降价的幅度不超过定价的15%,每听罐头的价钱应为多少钱?11.某工厂制作A,B两种手工艺品,B每件获利比A多105元,制作16件A与制作2件B获利相同.(1)制作一件A和一件B分别获利多少元?(2)工厂安排65人制作A,B两种手工艺品,每人每天制作2件A或1件B.现在在不增加工人的情况下,增加制作C工艺品.已知每人每天可制作1件C(每人每天只能制作一种手工艺品),要求每天制作A,C两种手工艺品的数量相等,设每天安排x人制作B,y人制作A.写出y与x之间的函数关系式;(3)在(1)(2)的条件下,每天制作B不少于5件.当每天制作B5件时,每件B获利不变,若B每增加1件,则当天平均每件B获利减少2元,已知C每件获利30元,求每天制作三种手工艺品可获得的总利润W(元)的最大值及相应x的值.x(元)…1313.51415.5…y(瓶)…70656045…12.小钉从某超市获得关于销售甲,乙两种品牌洗手液的信息如下:➢甲洗手液的进价为12元/瓶,每瓶利润不得高于进价的40%.➢乙洗手液每瓶的利润保持不变.➢当甲、乙两种洗手液每瓶的利润相同时,销售甲可获利150元.➢甲洗手液的日均销售量y瓶与每瓶售价x元的关系如表:请根据以上信息,解决以下问题:(1)利用学过的一次函数、二次函数、反比例函数的知识,选择一种模型来确定y与x的函数关系式.(2)求乙洗手液每瓶的利润为多少元?(3)据了解,该超市销售甲、乙两种洗手液获得的最大日均利润和不少于380元,请问该超市每日至少销售甲、乙两种洗手液共多少瓶?13.某服装批发市场销售一种衬衫,衬衫每件进货价为50元.规定每件售价不低于进货价,经市场调查,每月的销售量y(件)与每件的售价x(元)满足一次函数关系,部分数据如下表:售价x(元/件)606570销售量y(件)140013001200(1)求出y与x之间的函数表达式;(不需要求自变量x的取值范围)(2)该批发市场每月想从这种衬衫销售中获利24000元,又想尽量给客户实惠,该如何给这种衬衫定价?(3)物价部门规定,该衬衫的每件利润不允许高于进货价的30%,设这种衬衫每月的总利润为w(元),那么售价定为多少元可获得最大利润?最大利润是多少?14.某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千克)与销售单价x(元/千克)满足一次函数关系,其每天销售单价,销售量的四组对应值如下表所示:销售单价x(元/千克)55606570销售量y(千克)70605040(1)求y(千克)与x(元/千克)之间的函数表达式;(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?15.某水果经销商以20元/千克的价格新进1000kg杨梅进行销售,因为杨梅不耐储存,在运输储存过程损耗率为16.为了得到日销售量y(千克)与销售价格x销售价格x(元/千克)2025303540日销售量y(千克)300225150750(1)这批杨梅的实际成本为元/千克,每千克定价为元时,这批杨梅可获得5000元利润;(2)①请你根据表中的数据直接写出y与x之间的函数表达式.②该水果经销商应该如何确定这批杨梅的销售价格,才能使日销售利润w1最大?(3)该水果经销商参与电商平台助农活动,开展网上直销,可以完全避免运输储存过程中的损耗成本,但每销售1千克杨梅需支出a元(a>0)的相关费用,销售量与销售价格之间关系不变.当25≤x≤30,该水果经销商日获利w2的最大值为1200元,求a的值.(日获利=日销售利润﹣日支出费用)16.在水果销售旺季,某水果店购进一批优质水果,进价为20元/千克,利润不低于10%,且不超过40%,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为24.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利168元,那么该天水果的售价为多少元?(3)售价定为多少元时,每天可获得最大利润?最大日利润是多少元?17.为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如下表:天数(x)13610每件成本p(元)7.58.51012任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=2x+20(1≤x<10,且x为整数)40(10≤x≤15,且x为整数)设李师傅第x天创造的产品利润为(1)直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围;(2)求李师傅第几天创造的利润最大?最大利润是多少元?18.某公司开发出一款新的节能产品,成本价为5元/件.该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系(x为整数),已知线段DE表示的函数关系中,时间每增加1天,日销售量减少5件.(1)第24天的日销售量是件,日销售利润是元;(2)求y与x之间的函数关系式,并写出x的取值范围;(3)日销售利润不低于1280元的天数共有多少天?试销售期间,日销售最大利润是多少元?19.有一家苗圃计划种植桃树和柏树,根据市场调查与预测,种植桃树的利润y1(万元)与投资成本x(万元)满足如图1所示的二次函数y1=ax2;种植柏树的利润y2(万元)与投资成本x(万元)满足如图2所示的正比例函数y2=kx.(1)请分别直接写出利润y1(万元)与利润y2(万元)关于投资成本x(万元)的函数关系式;(2)若这家苗圃投资4万元种植桃树,投资6万元种植柏树,则可获得的总利润是多少万元?(3)若这家苗圃种植桃树和柏树投入总成本20万元,且桃树的投资成本不低于2万元,且不高于12万元,则苗圃最少能获得多少总利润?最多可获得多少总利润?20.某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w元,问:x为何值时,w最大?最大值是多少?21.金秋十月,梁子湖区成功获评“国家生态文明建设示范区”,以生态环境保护与绿色经济共赢的特色吸引各地游客纷纷前来观光.梁湖超市销售一批成本为20元/千克的绿色健康食品,深受游客青睐.经市场调查发现,该食品每天的销售量y(千克)与销售单价x(元/千克)之间满足一次函数关系,其图象如图所示.(1)求该食品每天的销售量y(千克)与销售单价x(元/千克)之间的函数关系式;(2)若超市按售价不低于成本价,且不高于40元销售,则销售单价定为多少,才能使销售该食品每天获得的利润W(元)最大?最大利润是多少?(3)若超市要使每天销售该食品获得的利润不低于2400元,则每天的销售量最少应为多少千克?22.有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?23.一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有关数据:x(元/件)456y(件)1000095009000(1)求y与x的函数关系式(不求自变量的取值范围);(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.24.某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元.为按时完成任务,该企业招收了新工人,设新工人李明第天生产的粽子数量为只,与满足如下关系式:(1)李明第几天生产的粽子数量为420只?(2)如图,设第天每只粽子的成本是p元,p与之间的关系可用图中的函数图象来刻画.若李明第天创造的利润为元,求与之间的函数表达式,并求出第几天的利润最大?最大值是多少元(利润=出厂价-成本)?(3)设(2)小题中第天利润达到最大值,若要使第()天的利润比第天的利润至少多48元,则第()天每只粽子至少应提价几元?25.某农作物的生长率P

与温度

t(℃)有如下关系:如图

1,当10≤t≤25

时可近似用函数刻画;当25≤t≤37

时可近似用函数

刻画.

(1)求h的值.

(2)按照经验,该作物提前上市的天数m(天)与生长率P

满足函数关系:生长率P

0.20.250.30.35提前上市的天数m

(天)051015①请运用已学的知识,求m

关于P

的函数表达式;②请用含的代数式表示m;(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为

200元,该作物

30

天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加

600元.因此给大棚继续加温,加温后每天成本w

(元)与大棚温度t(℃)之间的关系如图

2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).26.2021年体育中考,增设了考生进入考点需进行体温检测的要求.防疫部门为了解学生错峰进入考点进行体温检测的情况,调查了一所学校某天上午考生进入考点的累计人数(人)与时间(分钟)的变化情况,数据如下表:(表中9-15表示)时间(分钟)01234567899~15人数(人)0170320450560650720770800810810(1)根据这15分钟内考生进入考点的累计人数与时间的变化规律,利用初中所学函数知识求出与之间的函数关系式;(2)如果考生一进考点就开始测量体温,体温检测点有2个,每个检测点每分钟检测20人,考生排队测量体温,求排队人数最多时有多少人?全部考生都完成体温检测需要多少时间?(3)在(2)的条件下,如果要在12分钟内让全部考生完成体温检测,从一开始就应该至少增加几个检测点?27.超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)28.某商贸公司购进某种商品的成本为20元/,经过市场调研发现,这种商品在未来40天的销售单价y(元/)与时间x(天)之间的函数关系式为:且x为整数,且日销量与时间x(天)之间的变化规律符合一次函数关系,如下表:填空:(1)m与x的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?时间x(天)13610…日销量142138132124…(3)在实际销售的前20天中,公司决定每销售商品就捐赠n元利润()给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.29.某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?进货批次A型水杯(个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论