




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市第十中学2021-2022学年高一数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.sin15°cos75°﹣sin75°cos15°的值是()A. B. C. D.参考答案:D【考点】GQ:两角和与差的正弦函数.【分析】观察原式发现符合两角差的正弦函数公式,故利用此公式变形,计算后再根据正弦函数为奇函数即sin(﹣α)=﹣sinα,最后利用特殊角的三角函数值即可求出值.【解答】解:sin15°cos75°﹣sin75°cos15°=sin15°cos75°﹣cos15°sin75°=sin(15°﹣75°)=sin(﹣60°)=﹣sin60°=﹣.故选D【点评】此题考查了两角和与差的正弦函数公式,正弦函数的奇偶性,以及特殊角的三角函数值,熟练掌握公式是解本题的关键.2.若,那么下列不等式中正确的是(
)A. B. C. D.参考答案:D【分析】根据不等式的性质分别进行判断即可.【详解】若,则,故A错,,故B错,,故选D.【点睛】本题主要考查不等式性质的应用,要求熟练掌握不等式的性质.注意不等式成立的条件.3.设函数f(x)是奇函数,且在(0,+∞)内是增函数,又f(﹣3)=0,则f(x)<0的解集是()A.{x|﹣3<x<0或x>3} B.{x|x<﹣3或0<x<3}C.{x|x<﹣3或x>3} D.{x|﹣3<x<0或0<x<3}参考答案:B【考点】奇偶性与单调性的综合.【分析】利用函数是奇函数且在(0,+∞)内是增函数,得到函(﹣∞,0)上单调递增,利用f(﹣3)=0,得f(3)=0,然后解不等式即可.【解答】解:∵f(x)是奇函数,f(﹣3)=0,∴f(﹣3)=﹣f(3)=0,解f(3)=0.∵函数在(0,+∞)内是增函数,∴当0<x<3时,f(x)<0.当x>3时,f(x)>0,∵函数f(x)是奇函数,∴当﹣3<x<0时,f(x)>0.当x<﹣3时,f(x)<0,则不等式f(x)<0的解是0<x<3或x<﹣3.故选:B.4.设是定义在R上的奇函数且当x>0时,,则=:A.1
B.
C.-1
D.参考答案:C5.已知全集,,则等于(
)A.{2,4,6} B.{1,3,5} C.{2,4,5} D.{2,5}参考答案:A略6.下列表述正确的是
(
)A.
B.
C.
D.参考答案:B略7.已知集合A是函数f(x)=ln(x2﹣2x)的定义域,集合B={x|x2﹣5>0},则()A.A∩B=? B.A∪B=R C.B?A D.A?B参考答案:C【考点】函数的定义域及其求法.【专题】函数的性质及应用;集合.【分析】求出函数f(x)的定义域A,化简集合B,从而得出A、B的关系.【解答】解:∵函数f(x)=ln(x2﹣2x),∴x2﹣2x>0,解得x>2或x<0,∴f(x)的定义域是A={x|x>2,或x<0};又∵集合B={x|x2﹣5>0}={x|x>或x<﹣};∴B?A.故选:C.【点评】本题考查了求函数的定义域以及集合之间的运算关系问题,解题时应先求出A、B,再判定它们的关系,是基础题.8.用秦九韶算法求多项式,当时的值的过程中,不会出现的数值为(
)A.14
B.127
C.259.
D.64参考答案:B9.已知,若,则的值是()A. B.或 C.,或 D.参考答案:D该分段函数的三段各自的值域为,而∴∴;10.将一个质点随机投放在以A(1,1),B(5,1),C(1,4)为顶点的三角形内(含边界),若该质点到此三角形的三个顶点的距离均不小于d的概率为,则d=(A)1
(B)
(C)2
(D)4参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知等比数列的公比,则等于____________参考答案:12.如图,定义在[﹣1,2]上的函数f(x)的图象为折线ACB,则不等式f(x)≤log2(x+1)的解集是.参考答案:[1,2]【考点】函数的图象.【专题】计算题;应用题;数形结合;数形结合法;函数的性质及应用.【分析】在已知坐标系内作出y=log2(x+1)的图象,利用数形结合得到不等式的解集.【解答】解:由已知f(x)的图象,在此坐标系内作出y=log2(x+1)的图象,如图满足不等式f(x)≤log2(x+1)的x范围是1≤x≤2;所以不等式f(x)≤log2(x+1)的解集是[1,2];故答案为:[1,2].【点评】本题考查了数形结合求不等式的解集;用到了图象的平移.13.已知过点的直线l与x轴,y轴在第二象限围成的三角形的面积为3,则直线l的方程为
.参考答案:2x-3y+6=0设直线l的方程是y=k(x-3)+4,它在x轴、y轴上的截距分别是﹣+3,-3k+4,且﹣+3<0,-3k+4>0由已知,得(-3k+4)(﹣3)=6,解得k1=或k2=.所以直线l的方程为:.
14.设函数的定义域为.如果对任意,都存在常数,使得,称具有性质.现给出下列函数:①;②;③;④.其中具有性质的函数序号是__________.参考答案:①②③对于①,可取;对于②,可取;对于③,可取;对于④,函数的值域为,故不存在满足题意,故正确答案为①②③.15.已知是定义在R上的偶函数,则实数
,此函数的单调增区间为
.参考答案:对称轴为轴,则,于是,单调增区间为.16.已知函数的图象如图所示,它与x轴在原点处相切,且x轴与函数图象所围成区域(图中阴影部分)的面积为,则a的值为
参考答案:-117.用过球心的平面将一个球分成两个半球,则一个半球的表面积与原来整球的表面积之比为
。参考答案:3:4略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知f(x)=,试判断f(x)在[1,+∞)上的单调性,并证明.参考答案:【考点】函数单调性的判断与证明.【专题】函数的性质及应用.【分析】运用单调性的定义判断得出:f(x1)﹣f(x2)==,运用定义判断符号,就可以得出f(x1)<f(x2),利用单调性的定义判断即可.【解答】证明:设x1,x2∈[1,+∞),且x1<x2.f(x1)﹣f(x2)==∵x1,x2∈[1,+∞),且x1<x2.∴x1﹣x2<0,x1+x2>0,≥0,>0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2),∴f(x)在[1,+∞)上的单调递增.【点评】本题考查了函数的单调性的定义,关键是利用差比法分解因式,难度不大,属于中档题.19.河北容城中学的学生王丫丫同学在设计计算函数的值的程序时,发现当sinx和cosx满足方程时,无论输入任意实数x,f(x)的值都不变,你能说明其中的道理吗?这个定值是多少?你还能求出k的值吗?参考答案:略20.如图,在四棱锥P-ABCD中,底面ABCD是矩形,PA平面ABCD,AP=AB,BP=BC=2,E,F分别是PB,PC的中点。
(1)证明:EF//平面PAD;(2)证明:CD平面PAD;
(3)求三棱锥E-ABC的体积V.
参考答案:略21.已知二次函数f(x)=ax2+bx,(a,b为常数,且a≠0)满足条件f(﹣x+5)=f(x﹣3),且方程f(x)=x有两个相等的实根. (1)求f(x)的解析式; (2)是否存在实数m,n(m<n),使f(x)的定义域和值域分别为[m,n]与[3m,3n],若存在,求出m,n的值,若不存在,请说明理由. 参考答案:【考点】二次函数的性质;二次函数在闭区间上的最值. 【专题】综合题. 【分析】(1)由f(﹣x+5)=f(x﹣3),得函数的对称轴为x=1,又方程f(x)=x有两相等实根,即ax2+(b﹣1)x=0有两相等实根0,由此可求出a,b的值. (2)本题主要是借助函数的单调性确定出函数在[m,n]上的单调性,找到区间中那个自变量的函数值是3m,3n,由此建立方程求解,若能解出值,说明存在,否则不存在. 【解答】解:(1)∵f(﹣x+5)=f(x﹣3),∴f(x)的对称轴为x=1, 即﹣=1即b=﹣2a. ∵f(x)=x有两相等实根,∴ax2+bx=x, 即ax2+(b﹣1)x=0有两相等实根0, ∴﹣=0, ∴b=1,a=﹣, ∴f(x)=﹣x2+x. (2)f(x)=﹣x2+x=﹣(x﹣1)2+≤, 故3n≤,故m<n≤, 又函数的对称轴为x=1,故f(x)在[m,n]单调递增则有f(m)=3m,f(n)=3n, 解得m=0或m=﹣4,n=0或n=﹣4,又m<n,故m=﹣4,n=0. 【点评】本题考点是二次函数的性质考查综合利用函数的性质与图象转
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论