陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析_第1页
陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析_第2页
陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析_第3页
陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析_第4页
陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市东仪中学2021-2022学年高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知等腰三角形顶角的余弦值等于,则这个三角形底角的正弦值为(

)A

B

C

D

参考答案:C2.如图所示的茎叶图记录了甲、乙两个小组(每小组4人)在期末考试中的数学成绩.乙组记录中有一个数据模糊,无法确认,在图中以α表示.已知甲、乙两个小组的数学成绩的平均分相同,则乙组数学成绩的中位数为()A.92B.93C.93.5D.94参考答案:B考点:众数、中位数、平均数.

专题:计算题;概率与统计.分析:先根据甲、乙两组的平均分相同,求出α的值,再求乙组的中位数即可.解答:解:∵甲、乙两个小组的平均分相同,∴=α=2∴乙组数学成绩的中位数为=93.故选:B.点评:本题考查了求平均数与中位数的应用问题,是基础题目.3.函数的定义域为(

)A.

B.

C.

D.

参考答案:A4.已知是偶函数,它在上是减函数,若,则的取值范围是(

)A.

B.C.D.参考答案:C5.设,

,,则的大小顺序为()A.

B.

C.

D.参考答案:A略6.函数是单调函数时,的取值范围(

) A. B. C. D.参考答案:B7.(4分)函数f(x)=log2|2x﹣1|的图象大致是() A. B. C. D. 参考答案:A考点: 函数的图象.专题: 函数的性质及应用.分析: 需要分数讨论,利用函数的单调性和函数值域即可判断解答: 当x>0时,f(x)=log2(2x﹣1),由于y=log2t为增函数,t=2x﹣1为增函数,故函数f(x)在(0,+∞)为增函数,当x<0时,f(x)=log2(1﹣2x),由于y=log2t为增函数,t=1﹣2x为减函数,故函数f(x)在(﹣∞,0))为减函数,且t=1﹣2x为的值域为(0,1)故f(x)<0,故选:A.点评: 本题考查了分段函数的图象和性质,根据函数的单调性和值域即可判断图象,属于基础题8.设M=++…++,则M的值为()A.B.C.D.参考答案:B考点:数列的求和.专题:计算题;等差数列与等比数列.分析:由于=﹣,累加求和即可求得答案.解答:解:∵M=++…++…+=(1﹣)+(﹣)+…+(﹣)+…+﹣=1﹣=.故选B.点评:本题考查数列的裂项法求和,每一项裂为相邻两项之差是关键,属于中档题.9.下列命题中正确的

)(A)若,则

(B)若,则(C)若,则

(D),则参考答案:B10.若cos(﹣α)=,则sin2α=()A. B. C.﹣ D.﹣参考答案:D【考点】GF:三角函数的恒等变换及化简求值.【分析】法1°:利用诱导公式化sin2α=cos(﹣2α),再利用二倍角的余弦可得答案.法°:利用余弦二倍角公式将左边展开,可以得sinα+cosα的值,再平方,即得sin2α的值【解答】解:法1°:∵cos(﹣α)=,∴sin2α=cos(﹣2α)=cos2(﹣α)=2cos2(﹣α)﹣1=2×﹣1=﹣,法2°:∵cos(﹣α)=(sinα+cosα)=,∴(1+sin2α)=,∴sin2α=2×﹣1=﹣,故选:D.二、填空题:本大题共7小题,每小题4分,共28分11.若幂函数的图像经过点,则的值是___________参考答案:12.甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3,f3(x)=x,f4(x)=log2(x+1),有以下结论:①当x>1时,甲走在最前面;②当x>1时,乙走在最前面;③当0<x<1时,丁走在最前面,当x>1时,丁走在最前面;④丙不可能走在最前面,也不可能走在最后面;⑤如果它们一直运动下去,最终走在最前面的是甲.其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)参考答案:③④⑤【考点】函数解析式的求解及常用方法.【专题】应用题;函数思想;综合法;函数的性质及应用.【分析】根据指数型函数,幂函数,一次函数以及对数型函数的增长速度便可判断每个结论的正误,从而可写出正确结论的序号.【解答】解:路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为:,,f3(x)=x,f4(x)=log2(x+1);它们相应的函数模型分别是指数型函数,幂函数,一次函数,和对数型函数模型;①当x=2时,f1(2)=3,f2(2)=8,∴该结论不正确;②∵指数型的增长速度大于幂函数的增长速度,∴x>1时,甲总会超过乙的,∴该结论不正确;③根据四种函数的变化特点,对数型函数的变化是先快后慢,当x=1时甲、乙、丙、丁四个物体重合,从而可知当0<x<1时,丁走在最前面,当x>1时,丁走在最后面,∴该结论正确;④结合对数型和指数型函数的图象变化情况,可知丙不可能走在最前面,也不可能走在最后面,∴该结论正确;⑤指数函数变化是先慢后快,当运动的时间足够长,最前面的动物一定是按照指数型函数运动的物体,即一定是甲物体,∴该结论正确;∴正确结论的序号为:③④⑤.故答案为:③④⑤.【点评】考查指数型函数,幂函数y=x3和y=x,以及对数型函数的增长速度的不同,取特值验证结论不成立的方法.13.已知,则=

;参考答案:略14.不等式的解集为

.参考答案:略15.函数设a为实常数,y=f(x)是定义在R上的奇函数,当x<0时,,若f(x)≥a+1对一切x≥0恒成立,则a的取值范围为________a≤-2参考答案:16.已知,且,则有序实数对的值为____.参考答案:或略17.若,,则__________.参考答案:1解:∵,,∴,,∴,因此,本题正确答案是.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.根据下列条件,求圆的方程:(1)过点A(1,1),B(﹣1,3)且面积最小;(2)圆心在直线2x﹣y﹣7=0上且与y轴交于点A(0,﹣4),B(0,﹣2).参考答案:【考点】直线与圆相交的性质;圆的标准方程.【分析】(1)过A、B两点面积最小的圆即为以线段AB为直径的圆,由A与B的坐标,利用两点间的距离公式求出|B|的长,确定出圆的半径,即可求出面积最小圆的面积;(2)由圆与y轴交于A与B两点,得到圆心在直线y=﹣3上,与已知直线联立求出圆心坐标,及圆的半径,写出圆的标准方程即可.【解答】解:(1)过A、B两点且面积最小的圆就是以线段AB为直径的圆,∴圆心坐标为(0,2),半径r=|AB|==×=,∴所求圆的方程为x2+(y﹣2)2=2;(2)由圆与y轴交于点A(0,﹣4),B(0,﹣2)可知,圆心在直线y=﹣3上,由,解得,∴圆心坐标为(2,﹣3),半径r=,∴所求圆的方程为(x﹣2)2+(y+3)2=5.19.如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE=AD.(1)求异面直线BF与DE所成的角的大小;(2)证明:平面AMD⊥平面CDE;(3)求二面角A-CD-E的余弦值.参考答案:方法一(1)由题设知,BF∥CE,所以∠CED(或其补角)为异面直线BF与DE所成的角.设P为AD的中点,连接EP,PC.因为FE綊AP,所以FA綊EP.同理,AB綊PC.又FA⊥平面ABCD,所以EP⊥平面ABCD.而PC、AD都在平面ABCD内,故EP⊥PC,EP⊥AD.由AB⊥AD,可得PC⊥AD.设FA=a,则EP=PC=PD=a,CD=DE=EC=a,故∠CED=60°.所以异面直线BF与DE所成的角的大小为60°.(2)因为DC=DE且M为CE的中点,所以DM⊥CE.连接MP,由EP=CP得,MP⊥CE.又MP∩DM=M,故CE⊥平面AMD.而CE?平面CDE,所以平面AMD⊥平面CDE.(3)设Q为CD的中点,连接PQ,EQ.因为CE=DE,所以EQ⊥CD.因为PC=PD,所以PQ⊥CD,故∠EQP为二面角A-CD-E的平面角.由(1)可得,EP⊥PQ,EQ=a,PQ=a.于是在Rt△EPQ中,cos∠EQP==.所以二面角A-CD-E的余弦值为.方法二如图所示,建立空间直角坐标系,点A为坐标原点,设AB=1,依题意得B(1,0,0),C(1,1,0),D(0,2,0),E(0,1,1),F(0,0,1),M.(1)=(-1,0,1),=(0,-1,1),于是cos〈,〉===.所以异面直线BF与DE所成的角的大小为60°.(2)由=,=(-1,0,1),=(0,2,0),可得·=0,·=0.因此,CE⊥AM,CE⊥AD.又AM∩AD=A,故CE⊥平面AMD.而CE?平面CDE,所以平面AMD⊥平面CDE.(3设平面CDE的法向量为u=(x,y,z),则于是令x=1可得u=(1,1,1).又由题设,平面ACD的一个法向量为v=(0,0,1).所以,cosu,v===.因为二面角A-CD-E为锐角,所以其余弦值为.20.(本题满分12分)在中,分别是角的对边,向量,,且.(Ⅰ)求角的大小;(Ⅱ)设,且的最小正周期为,求在区间上的最大值和最小值.

参考答案:解:(I)由,得,

……2分由正弦定理,得………………4分………6分(Ⅱ)由题知,由已知得,,

……9分当时,

…………10分所以,当时,的最大值为;当时,的最大值为

略21.设函数定义在上,其中.(1)求函数的单调递增区间;(2)若在上恒成立。求实数的取值范围.参考答案:

解:

…………2分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论