




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Anovelelectronicnoseforsimultaneousquantitative
determinationofconcentrationsandodorintensityanalysisofbenzene,tolueneandethylbenzenemixturesShenJiang,JieminLiu,*DiFang,LuchunYanandChuandongWuReporter:2015.12.05September2015Volume5number96
IntroductionTheE-nosesystermVOCsGassensorarraySignalpretreatment(converter)patternrecognitionsystemresultconvertelectricalsignalstoresponsevaluesAsthemostsignificantcomponentofanartificialolfactionsystem,it'scomposedofmetaloxidesensors,CatalyticcombustiontypeandelectrochemicaltypesensorsPCA,SVM,PLSweremostusedforqualitativeanalysisofmultipleVOCs;ICA,SVDweremostappliedinquantitativeanalysisofasinglegas;ANNswerethemostcommonmethodforodoridentificationanddeterminationofodorintensityLOREMpatternrecognitonsystemBPneuralnetwork1.SensorarrayforE-nose2.E-nosesystemsetup3.Databasemeasurementmethod1.Selectionandcharacterizationofthesensorarray2.Concentrationdetermination3.OdorintensitydeterminationMaterialsandMethodsSensorarrayforE-nose:
workinggases:benzene,tolueneandethylbenzenewithapurity>99.9%(J&KChemicalTechnology,China)GC-FIDanalysiscondition:gaschromatography(GC-2014,Shimadzu,Japan)withaflameionizationdetectorandaRtx-5capillarycolumn(30m×0.25mmID,0.5μmfilmthickness).Acylindricalglasscontainer(volumeof17.3L)withahole(diameterof4cm)initslidworkedasthegasvesselbecomposedofgassensors,atemperatuer(25±0.5℃)sensorahumiditysensor(45-50%).selectsuitablesensors0.4μlworkingsolutioninjectinE-nose20mg/m3gasselectthesensorscanresponseinatleastonesolutiontargetstestthestabilityofthesensorarrayevaporatesensorarray20groupssinglegasestestrespectively.5-200mg/m3,intervalwas10mg/m3determinateconcentrationE-nosedeterminationtrainingdatabase(BPNs)testdata(intestdatabase)210groupsincluding60single,45binary105ternary.5-200mg/m380groupsincluding24single,27binary29ternary.5-200mg/m3testmodicateoptimiseGC-FIDdeterminatethesamesamples'concentrationcomparativeanalysisofGC-FLD'sandE-nose'sresults.thebestparametersoftheneuralnetworkwereascertainedandtheircodeswerewrittenintothefinalsoftwaresystem.pridictionofodorintensitytheodorsensorymethodtheodorintensityrelativeconcentrationsweresameasthetestdataeachcompoundtestedwasrespectivelyinjectedintoanolfactory-bag(3Lvolumeandfullofcleanair),whenallthecompoundshadcompletelyevaporated,anodorsamplewaspreparedbytransferringacertainquantityofthegasfromthepreviousolfactory-bagtoanewbagbyaninjector.Then6sniffingpanelistsevaluatedthetestinggasaccordingtoOIRSselecttherelativepredicationmodelsandconfirmthecontantsthen,predicationmodelswereemployedtopredicttheodorintensityandtheresultswerecomparedwiththesniffedvalues,thentheoptimummodelsweredetermined.RESULTSPART1:fig.2showsthatsuitablesensorsareMC119,MQ6,TGS2610,2M008andWSP2620.sothese5sensorsareselectedtocompriseinasensorarray.wecanfindAllRSDvalueswerelessthan7%,whichshowthattheexperimenthadgoodprecision.PART2
TheresultsshowthattheE-nosesystemcoulddeterminerespectiveconcentrationsofaromatichydrocarbonmixturessimultaneouslyandithadahighaccuracyrelativetoGC-FID.theBPneuralnetworkused'logsig'and'purelin'astransferfunctionsand'trainlm'
asthetrainingfunctionandwascomposedof210groupsoftrainingdata,a5dimensioninputlayeranda3dimensionoutputlayer,6hiddenlayersand20neuronsineverylayer.PART:3
Weber-FecherlawSothesethreemodelswereusedtopredicttheodorintensity.ThetotalAREwas5.31%,thePearsoncorrelationcoefficientwas0.947andsignificanceofpaired-sampleT-testwas0.175.Discussion(1)ComparedwithpreviousE-noses,thetestingtimeforonetestwaslessthantenminutes,whichhastheadvantageoffastdetermination.(2)TheconcentrationsweremeasuredbyaBPneuralnetworkwhiletheodorintensitywasmeasuredbyamodelprediction.therelativeerrorsofthechemicalconcentrationsandodorintensitywere9.71%and5.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 科技互联网产业风险管理与合规体系建设报告
- 城市更新中历史文化街区保护与开发的社区参与路径研究报告
- 物理法则的现代应用试题及答案
- 社交电商裂变营销:从内容营销到社群运营的全面解析
- 维保考试题及答案
- 科技互联网行业人工智能算法优化与性能提升策略研究报告
- 2025年智能仓储物流系统智能化改造成果鉴定报告
- 小学教师教学反思改进试题及答案
- 新能源汽车安全技术考试试题及答案
- 数学一诊试题及答案
- 2025年全国中学生汉字听写大会比赛题库及解析(共八套)
- 防汛安全培训课件
- 关于临期商品的处理管理办法
- 新能源全面入市是构建新型电力系统的重要支撑-136号文政策解读
- 2025消防业务理论考试题库及参考答案
- 机关财务报销制度和流程
- DB12-T1196-2023公路养护工程质量检验评定标准
- 水幕电影制作合同
- 交通政策对经济增长的效应分析-深度研究
- 儿科感染性疾病
- 公司科学管理
评论
0/150
提交评论