版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
年级高三学科数学(理)版本人教版(理)内容标题高三新课:数列、函数的极限(理)编稿老师刘震【本讲教育信息】一.教学内容:高三新课:数列、函数的极限②③()④(为常数)(3)几个常用的极限①(为常数)②(0)③(且)④()2.函数的极限(1)当时,的极限(2)当时,的极限(3)运算法则如果,那么①②解:(1)的项随的增大而减少,但大于0,且当无限地增大时,无限地趋于0,因此。(2)数列的项随的增大而增大,但小于7,且当无限地增大时,无限地趋近于7,因此数列的极限为7。(3)数列的项正负交错,随增大其绝对值减少但不等于0,当无限地增大时,无限地趋于0。因此数列的极限为0。[例2]已知,。求下列极限。(1);(2)。解:(1)(2)[例3]求下列数列的极限。(1);(2)(3)[例4]求的值。解:①当时,原式②当时,原式③当时,原式所以原式[例5]已知数列前项之和(为不是1的常数)(1)用表示;(2)若,求的取值范围。解:(2)要求,即要求,且,得[例6](1)设,求,及解:,∵∴(2)设,问是否存在。[例9]已知,讨论在和时的极限。解:(1)当时,∵∴时,的极限不存在(2)当时,∵∴[例10]已知,求的值。解:由于当时,的极限存在∴分子、分母必有公因式∴并有1.下列数列中不存在极限的是()A. B.C. D.2.下列数列中有极限的是()①②③④⑤A.②⑤B.②④⑤C.①④⑤D.①③④3.若,则()A. B.且C. D.4.对无穷数列有下面四个命题:①一定有极限;②若为等差数列,那么有极限的充要条件是它的公差;③若为等比数列,那么公比时,有极限;④若为递增数列,那么一定没有极限以上命题中正确的个数是()A.1B.2C.3D.45.()A.B.1C.0D.不存在6.()A.不存在B.1C.D.27.()二.解答题:1.已知等比数列的公比为,且有,求首项的取值范围。2.写出下列函数的极限:(1)(2)(3)3.设函数是一个偶函数,且,,求出这一函数的最大值。【试题答案】一.1.C2.A3.A4.B5.B6.A7.A8.D二.1.解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年高职应用化工技术(精细化工基础)试题及答案
- 2025年中职城市轨道交通运营服务(应急处理)试题及答案
- 禁毒防艾知识讲座课件
- 2025 小学二年级科学下册了解植物茎的运输实验报告总结课件
- 串联电路和并联电路(课件)2025-2026学年初中物理人教版九年级全一册
- 江苏省海安市实验中学2025-2026学年度高一上学期1月月考(选修)历史试题(含答案)
- 2025青海西宁市妇幼保健计划生育服务中心招募志愿者6人备考题库附答案详解
- 2026四川凉山州西昌市人民医院招聘临床护士35人备考题库及1套完整答案详解
- 2025年西安市第83中学浐灞第二分校教师招聘备考题库(含答案详解)
- 2025黑龙江省水利水电集团有限公司竞争性选聘权属单位高级管理人员岗位1人备考题库完整答案详解
- 北京市公路工程标准施工电子招标文件(2020版)
- 政府采购法律法规规章培训课件(供应商版)
- 乡土中国第14章课件
- 综掘设备安全知识课件
- 《2025年CSCO前列腺癌诊疗指南》更新要点解读 2
- 热源厂锅炉设备更新改造项目可行性研究报告模板-立项备案
- 金矿矿山合作开采协议书范本
- 2024-2025学年湖南省怀化市高二上学期期末质量检测英语试卷
- 机器学习原理与应用课件 第1章 概述
- 2024-2025学年重庆市江北区六年级(上)期末数学试卷
- 北京市通州区事业单位公开招聘工作人员172人笔试高频重点提升(共500题)附带答案详解
评论
0/150
提交评论