电子技术与基础十四章 半导体器件ppt 文件_第1页
电子技术与基础十四章 半导体器件ppt 文件_第2页
电子技术与基础十四章 半导体器件ppt 文件_第3页
电子技术与基础十四章 半导体器件ppt 文件_第4页
电子技术与基础十四章 半导体器件ppt 文件_第5页
已阅读5页,还剩58页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子技术

哈尔滨工业大学(威海)信息与电气工程学院

第14章

半导体器件返回晶体管的诞生

1947年12月16日威廉·邵克雷(WilliamShockley)约翰·巴顿(JohnBardeen)沃特·布拉顿(WalterBrattain)成功地在贝尔实验室制造出第一个晶体管,开辟了电子技术的新纪元;1950年,威廉·邵克雷开发出双极晶体管(BipolarJunctionTransistor),就是现在通用的标准的晶体管。第14章半导体器件

晶体管的作用

晶体管是当今数字世界的构建模块,被认为是20世纪最伟大最重要的发明之一。从最早被人们熟知的半导体,到如今随处可见的手机、随身听、DVD、各种便携式存储器、电视、电脑等。只要您能想到的电子产品,几乎都运用了晶体管技术。英特尔公司董事长贝瑞特博士在庆祝晶体管诞生60周年时表示。“晶体管太有魅力了!它改变了世界,改变了我们每个人的生活、学习和工作方式。在人类发展的路程上,晶体管是我们‘最好的朋友’。”第14章半导体器件

14.1

半导体的导电特性14.2PN结及其单向导电性14.3二极管14.4稳压二极管14.5晶体管14.6光电器件第14章

半导体器件一、理解PN结的单向导电性,晶体管的电流分配和电流放大作用;二、了解二极管、稳压管和晶体管的基本构造、工作原理和特性曲线,理解主要参数的意义;三、掌握含有二极管电路的分析方法。本章要求第14章

半导体器件14.1半导体的导电特性半导体:导电能力介乎于导体和绝缘体之间的物质。半导体的导电特性:热敏特性光敏特性掺杂特性半导体的导电特性:(可做成温度敏感元件,如热敏电阻)。掺杂特性:往纯净的半导体中掺入某些杂质,导电能力显著增强(可做成各种不同用途的半导体器件,如二极管、三极管和晶闸管等)。光敏特性:当受到光照时,导电能力明显变化(可做成各种光敏元件,如光敏电阻、光敏二极管、光敏三极管等)。热敏特性:当环境温度升高时,导电能力增强14.1半导体的导电特性

应用最多的本征半导体为锗和硅,它们各有四个价电子,都是四价元素.硅的原子结构

完全纯净的、具有晶体结构的半导体,称为本征半导体。14.1.1本征半导体晶体中原子的排列方式14.1.1本征半导体

纯净的半导体其所有的原子基本上整齐排列,形成晶体结构,所以半导体也称为晶体——晶体管名称的由来

本征半导体晶体结构中的共价健结构SiSiSiSi共价键价电子14.1.1本征半导体自由电子与空穴14.1.1本征半导体

共价键中的电子在获得一定能量后,即可挣脱原子核的束缚,成为自由电子同时在共价键中留下一个空穴。空穴SiSiSiSi自由电子热激发与复合达到动态平衡

由于受热或光照产生自由电子和空穴的现象-----

热激发14.1.1本征半导体

自由电子在运动中遇到空穴后,两者同时消失,称为复合现象SiSiSiSi自由电子空穴半导体导电方式载流子自由电子和空穴温度对半导体器件性能的影响很大。14.1.1本征半导体SiSiSiSi价电子空穴当半导体两端加上外电压时,自由电子作定向运动形成电子电流;而空穴的运动相当于正电荷的运动本征半导体的导电机理

当半导体两端加上外电压时,在半导体中将出现两部分电流

(1)自由电子作定向运动电子电流

(2)价电子递补空穴空穴电流注意:

(1)本征半导体中载流子数目极少,其导电性能很差;(2)温度愈高,载流子的数目愈多,半导体的导电性能也就愈好。所以,温度对半导体器件性能影响很大。自由电子和空穴都称为载流子。自由电子和空穴成对地产生的同时,又不断复合。在一定温度下,载流子的产生和复合达到动态平衡,半导体中载流子便维持一定的数目。14.1.1本征半导体14.1.2N型半导体和P型半导体

掺杂后自由电子数目大量增加,自由电子导电成为这种半导体的主要导电方式,称为电子半导体或N型半导体。掺入五价元素

Si

Si

Si

Sip+多余电子磷原子在常温下即可变为自由电子失去一个电子变为正离子

在本征半导体中掺入微量的杂质(某种元素),形成杂质半导体。

在N

型半导体中自由电子是多数载流子,空穴是少数载流子。14.1.2N型半导体和P型半导体

掺杂后空穴数目大量增加,空穴导电成为这种半导体的主要导电方式,称为空穴半导体或P型半导体。掺入三价元素

Si

Si

Si

Si

在P型半导体中空穴是多数载流子,自由电子是少数载流子。B–硼原子接受一个电子变为负离子空穴14.1.2N型半导体和P型半导体

注意:不论N型半导体还是P型半导体,虽然它们都有一种载流子占多数,但是整个晶体仍然是不带电的。返回

1.在杂质半导体中多子的数量与

(a.掺杂浓度、b.温度)有关。

2.在杂质半导体中少子的数量与(a.掺杂浓度、b.温度)有关。

3.当温度升高时,少子的数量(a.减少、b.不变、c.增多)。abc

4.在外加电压的作用下,P型半导体中的电流主要是

,N型半导体中的电流主要是。(a.电子电流、b.空穴电流)ba14.1.2N型半导体和P型半导体14.2PN结及其单向导电性14.2.1PN结的形成多子的扩散运动内电场少子的漂移运动浓度差P型半导体N型半导体

内电场越强,漂移运动越强,而漂移使空间电荷区变薄。

扩散的结果使空间电荷区变宽。空间电荷区也称PN结

扩散和漂移这一对相反的运动最终达到动态平衡,空间电荷区的厚度固定不变。----------------++++++++++++++++++++++++--------形成空间电荷区14.2.2PN结的单向导电性1.PN结加正向电压(正向偏置)PN结变窄P接正、N接负外电场IF

内电场被削弱,多子的扩散加强,形成较大的扩散电流。

PN结加正向电压时,PN结变窄,正向电流较大,正向电阻较小,PN结处于导通状态。内电场PN------------------+++++++++++++++++++–PN结变宽2.PN结加反向电压(反向偏置)外电场

内电场被加强,少子的漂移加强,由于少子数量很少,形成很小的反向电流。IR

P接负、N接正

–+内电场PN+++------+++++++++---------++++++---

PN结呈现高阻状态,通过PN结的电流是少子的漂移电流

----反向电流特点:受温度影响大原因:反向电流是靠热激发产生的少子形成的14.2.2PN结的单向导电性14.2.1PN结的形成扩散运动和漂移运动的动态平衡扩散强漂移运动增强内电场增强两者平衡PN结宽度基本稳定外加电压平衡破坏扩散强漂移强PN结导通PN结截止14.2.2PN结的单向导电性结论

PN结具有单向导电性

(1)PN结加正向电压时,处在导通状态,结电阻很低,正向电流较大。(2)PN结加反向电压时,处在截止状态,结电阻很高,反向电流很小。返回阴极引线阳极引线二氧化硅保护层P型硅N型硅(

c

)平面型触丝阳极引线N型锗片阴极引线外壳(

a)点接触型铝合金小球N型硅阳极引线PN结金锑合金底座阴极引线(

b)面接触型半导体二极管的结构和符号

14.3二极管二极管的结构示意图阴极阳极(

d

)符号D14.3二极管14.3.1基本结构(a)点接触型(b)面接触型

结面积小、结电容小、正向电流小。用于检波和变频等高频电路。

结面积大、正向电流大、结电容大,用于工频大电流整流电路。(c)平面型

用于集成电路制作工艺中。PN结结面积可大可小,用于高频整流和开关电路中。14.3.2伏安特性硅管0.5V,锗管0.1V。反向击穿电压U(BR)导通压降

外加电压大于死区电压二极管才能导通。外加电压大于反向击穿电压二极管被击穿,失去单向导电性。正向特性反向特性特点:非线性硅0.6~0.8V锗0.2~0.3VUI死区电压PN+–PN–+反向电流在一定电压范围内保持常数。14.3.3伏安特性的折线化I0I0US14.3.4主要参数1.最大整流电流

IOM二极管长期使用时,允许流过二极管的最大正向平均电流。2.反向工作峰值电压URWM是保证二极管不被击穿而给出的反向峰值电压,一般是二极管反向击穿电压UBR的一半或三分之二。二极管击穿后单向导电性被破坏,甚至过热而烧坏。3.反向峰值电流IRM指二极管加最高反向工作电压时的反向电流。反向电流大,说明管子的单向导电性差,IRM受温度的影响,温度越高反向电流越大。二极管电路分析举例定性分析:判断二极管的工作状态导通截止否则,正向管压降硅0.6~0.7V锗0.2~0.3V分析方法:将二极管断开,分析二极管两端电位的高低或所加电压UD的正负。若V阳>V阴或UD为正(正向偏置),二极管导通若V阳<V阴或UD为负(反向偏置),二极管截止若二极管是理想的,正向导通时正向管压降为零,反向截止时二极管相当于断开。14.3.4主要参数电路如图,求:UAB

V阳=-6VV阴=-12VV阳>V阴二极管导通若忽略管压降,二极管可看作短路,UAB=-6V否则,UAB低于-6V一个管压降,为-6.3V或-6.7V例1:

取B点作参考点,断开二极管,分析二极管阳极和阴极的电位。二极管起钳位作用。D6V12V3kBAUAB+–14.3.5应用举例14.3.5应用举例

例2:图中电路,输入端A的电位VA=+3V,B的电位VB=0V,求输出端Y的电位VY。电阻R接负电源-12V。VY=+2.7V解:DA优先导通,DA导通后,DB上加的是反向电压,因而截止。DA起钳位作用,DB起隔离作用。-12VAB+3V0VDBDAY返回ui>8V,二极管导通,可看作短路uo=8V

ui<8V,二极管截止,可看作开路uo=ui已知:二极管是理想的,试画出uo

波形。8V例3:二极管的用途:

整流、检波、限幅、钳位、开关、元件保护、温度补偿等。ui18V参考点二极管阴极电位为8VD8VRuoui++––14.3.5应用举例14.4稳压二极管1.符号

UZ

稳压管正常工作时加反向电压使用时要加限流电阻稳压管反向击穿后,电流变化很大,但其两端电压变化很小,利用此特性,稳压管在电路中可起稳压作用。UZIZIZMIZ2.伏安特性_+UIO

一种特殊的面接触型半导体硅二极管。它在电路中与适当数值的电阻相配合能起稳定电压的作用。3.主要参数(1)稳定电压UZ

稳压管正常工作(反向击穿)时管子两端的电压。(2)电压温度系数u环境温度每变化1C引起稳压值变化的百分数。(3)动态电阻(4)稳定电流IZ、最大稳定电流IZM(5)最大允许耗散功率PZM=UZIZMrZ愈小,曲线愈陡,稳压性能愈好。14.4稳压二极管例题:U0+_UUZR稳压管的稳压作用当U<UZ时,电路不通;当U>UZ时,稳压管击穿此时选R,使IZ<IZM返回14.4稳压二极管14.5晶体管14.5.1基本结构14.5.2电流分配和放大原理14.5.3特性曲线14.5.4主要参数结构平面型

合金型

NPN

PNP14.5.1基本结构发射结集电结BNNP发射区基区集电区ECNNPBECCEB发射结集电结BPPN发射区基区集电区ECPPNBECCEB14.5.1基本结构基区:最薄,掺杂浓度最低发射区:掺杂浓度最高发射结集电结BECNNP基极发射极集电极结构特点:集电区:面积最大14.5.1基本结构14.5.2电流分配和放大原理1.三极管放大的外部条件BECNNPEBRBECRC发射结正偏、集电结反偏PNP发射结正偏VB<VE集电结反偏VC<VB从电位的角度看:

NPN

发射结正偏VB>VE集电结反偏VC>VB

ICECµAmAmAIBIERB++__EBBCE3DG6共发射极接法14.5.2电流分配和放大原理2.各极电流关系及电流放大作用IB(mA)IC(mA)IE(mA)00.020.040.060.080.10<0.0010.701.542.303.103.95<0.0010.721.582.363.184.05结论:

把基极电流的微小变化能够引起集电极电流较大变化的特性称为晶体管的电流放大作用。

实质:用一个微小电流的变化去控制一个较大电流的变化,是CCCS器件。(1)IE=IC+IB符合基尔霍夫电流定律。(2)IE和IC比IB大的多。(3)当IB=0(将基极开路)时,IE=ICEO,ICEO<0.001mA14.5.2电流分配和放大原理3.三极管内部载流子的运动规律BECNNPEBRBECIEIBEICEICBO

基区空穴向发射区的扩散可忽略。发射结正偏,发射区电子不断向基区扩散,形成发射极电流IE。

进入P区的电子少部分与基区的空穴复合,形成电流IBE,多数扩散到集电结。从基区扩散来的电子作为集电结的少子,漂移进入集电结而被收集,形成ICE。集电结反偏,有少子形成的反向电流ICBO。14.5.2电流分配和放大原理3.三极管内部载流子的运动规律IC=ICE+ICBOICEICIBBECNNPEBRBECIEIBEICEICBOIB=IBE-ICBOIBEICE与IBE之比称为共发射极电流放大系数集-射极穿透电流,温度ICEO(常用公式)若IB=0,则

ICICE014.5.2电流分配和放大原理14.5.3特性曲线即管子各电极电压与电流的关系曲线,是管子内部载流子运动的外部表现,反映了晶体管的性能,是分析放大电路的依据。为什么要研究特性曲线:1)直观地分析管子的工作状态2)合理地选择偏置电路的参数,设计性能良好的电路重点讨论应用最广泛的共发射极接法的特性曲线发射极是输入回路与输出回路的公共端测量晶体管特性的实验线路IC共发射极电路输入回路输出回路EBmAAVUCEUBERBIBECV++––––++14.5.3特性曲线1.输入特性特点:非线性死区电压:硅管0.5V,锗管0.1V。正常工作时发射结电压:NPN型硅管

UBE0.6~0.7VPNP型锗管

UBE0.2~0.3VIB(A)UBE(V)204060800.40.8UCE1VO14.5.3特性曲线2.输出特性IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O放大区输出特性曲线通常分三个工作区:(1)放大区在放大区有IC=

IB

,也称为线性区,具有恒流特性。在放大区,发射结处于正向偏置、集电结处于反向偏置,晶体管工作于放大状态。14.5.3特性曲线IB=020A40A60A80A100A36IC(mA)1234UCE(V)912O(2)截止区IB<0以下区域为截止区,有IC0

。在截止区发射结处于反向偏置,集电结处于反向偏置,晶体管工作于截止状态。饱和区截止区(3)饱和区

当UCEUBE时,晶体管工作于饱和状态。在饱和区,IBIC,发射结处于正向偏置,集电结也处于正偏。

深度饱和时,硅管UCES0.3V,

锗管UCES0.1V。14.5.3特性曲线14.5.4主要参数1.电流放大系数,直流电流放大系数交流电流放大系数当晶体管接成共发射极电路时,表示晶体管特性的数据称为晶体管的参数,晶体管的参数也是设计电路、选用晶体管的依据。注意:和

的含义不同,但在特性曲线近于平行等距并且ICE0较小的情况下,两者数值接近。常用晶体管的

值在20~200之间。例:在UCE=6V时,在Q1点IB=40A,IC=1.5mA;

在Q2点IB=60A,IC=2.3mA。在以后的计算中,一般作近似处理:=。IB=020A40A60A80A100A36IC(mA)1234UCE(V)9120Q1Q2在Q1点,有由Q1和Q2点,得14.5.4主要参数2.集-基极反向截止电流ICBO

ICBO是由少数载流子的漂移运动所形成的电流,受温度的影响大。温度ICBOICBOA+–EC3.集-射极反向截止电流(穿透电流)ICEOAICEOIB=0+–

ICEO受温度的影响大。温度ICEO,所以IC也相应增加。三极管的温度特性较差。14.5.4主要参数ICEO=IC|IB=0穿透电流ICEO与ICBO的关系:ICBO愈大,愈高的管子,稳定性愈差。因此,在选管子时,要求ICBO尽可能小些,而以不超过100为宜。14.5.4主要参数4.集电极最大允许电流ICM5.集-射极反向击穿电压U(BR)CEO集电极电流IC上升会导致三极管的值的下降,当值下降到正常值的三分之二时的集电极电流即为ICM。当集—射极之间的电压UCE超过一定的数值时,三极管就会被击穿。手册上

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论