初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 全国优质课一等奖_第1页
初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 全国优质课一等奖_第2页
初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 全国优质课一等奖_第3页
初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 全国优质课一等奖_第4页
初中数学北师大版八年级下册第一章三角形的证明3.线段的垂直平分线 全国优质课一等奖_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版数学八年级下册线段的垂直平分线课时练习一、选择题1.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10答案:C解析:解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.分析:由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.2.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF的度数为()A.48°B.36°C.30°D.24°答案:A解析:解:∵BD平分∠ABC,∴∠DBC=∠ABD=24°,∵∠A=60°,∴∠ACB=180°-60°-24°×2=72°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=24°,∴∠ACF=72°-24°=48°,故选:A.分析:根据角平分线的性质可得∠DBC=∠ABD=24°,然后再计算出∠ACB的度数,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCB=24°,然后可算出∠ACF的度数.3.如图,在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,若已知AB=10,△GBC的周长为17,则底BC的长为()A.10B.9C.7D.5答案:C解析:解:如图,∵在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,∴AG=BG,∵AB=10,△GBC的周长为17,∴CG+BG+BC=CG+AG+BC=AC+BC=17,AC=AB=10,∴BC=7.故选C.分析:首先根据题意在等腰△ABC中,一腰AB的垂直平分线交另一腰AC于点G,根据线段垂直平分线的性质,可得AG=BG,继而可得△GBC的周长=AC+BC=17,则可求得答案.4.如图,AB=AC,∠A=40°,AB的垂直平分线DE交AC于点E,垂足为D,则∠EBC的度数是()A.30°B.40°C.70°D.80°答案:A解析:解:∵AB的垂直平分线DE交AC于点E,∴AE=BE,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠C=70°,∴∠EBC=∠ABC-∠ABE=30°.故选A.分析:由AB的垂直平分线DE交AC于点E,可得AE=BE,继而求得∠ABE=∠A=40°,然后由AB=AC,求得∠ABC的度数,继而求得答案.5.如图,在△ABC中,AB的垂直平分线分别交AB,AC于D,E两点,且AC=10,BC=4,则△BCE的周长为()A.6B.14C.18D.24答案:B解析:解:∵AC=10,BC=4,∴AC+BC=10+4=14,∵DE是线段AB的垂直平分线,∴AE=BE,∴△BCE的周长=(BE+CE)+BC=AC+BC=14.故选B.分析:先根据AC=10,BC=4,可得出AC+BC的长,再根据DE是线段AB的垂直平分线可得到AE=BE,进而可得出答案.6.如图,在Rt△ABC中,∠C=90°,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则△BCM的周长为()A.18B.16C.17D.无法确定答案:C解析:解:在Rt△ABC中,∠C=90°,AC=12,AB=13,由勾股定理得,BC=5,∵MN是AB的垂直平分线,∴MB=MA,∴△BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选:C分析:根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可.7.如果三角形三条边的中垂线的交点在三角形的外部,那么,这个三角形是()A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形答案:C解析:解:如图,O是边AB和边AC的垂直平分线的交点,则AO=OB,AO=OC,所以∠OAB=∠OBA,∠OAC=∠OCA,∵∠BAC=∠OAB+∠OAC=∠OBA+∠OCA,∴∠BAC>∠ABC+∠ACB,∵∠BAC+∠ABC+∠ACB=180°,∴∠BAC>90°,

即△ABC是钝角三角形,故选C分析:先根据题意画出图形,再根据线段垂直平分线性质、等腰三角形的性质、三角形的内角和定理求出∠BAC>90°即可.8.已知MN是线段AB的垂直平分线,C,D是MN上任意两点,则∠CAD和∠CBD之间的大小关系是()A.∠CAD<∠CBDB.∠CAD=∠CBDC.∠CAD>∠CBDD.无法确定答案:B解析:解:∵MN是线段AB的垂直平分线,C,D是MN上任意两点,∴AC=BC,AD=BD,∴∠DAB=∠CBA,∠DAB=∠DBA,如图1,∠CAD=∠CAB+∠DAB,∠CBD=∠CBA+∠DBA,∴∠CAD=∠CBD;如图2,∠CAD=∠CAB-∠DAB,∠CBD=∠CBA-∠DBA,∴∠CAD=∠CBD.故选B.分析:首先根据题意画出图形,然后由MN是线段AB的垂直平分线,C,D是MN上任意两点,根据线段垂直平分线的性质可得:AC=BC,AD=BD,则可证得∠DAB=∠CBA,∠DAB=∠DBA,继而求得答案.9.已知△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰和底边长分别为()A.24cm和12cmB.16cm和22cmC.20cm和16cmD.22cm和16cm答案:D解析:解:如图,连接BD,∵D在线段AB的垂直平分线上,∴BD=AD,∴BD+DC+BC=AC+BC=38cm,且AB+AC+BC=60cm,∴AB=60cm-38cm=22cm,∴AC=22cm,∴BC=38cm-AC=38cm-22cm=16cm,即等腰三角形的腰为22cm,底为16cm,故选D.分析:连接BD,根据线段垂直平分线的性质可得到BD=AD,可知两三角形周长差为AB,结合条件可求得腰长,再由周长可求得BC,可得出答案.10.如图,地面上有三个洞口A、B、C,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A、B、C三个点的距离相等),尽快抓到老鼠,应该蹲守在()A.△ABC三边垂直平分线的交点B.△ABC三条角平分线的交点C.△ABC三条高所在直线的交点D.△ABC三条中线的交点答案:A解析:解:∵三角形三边垂直平分线的交点到三个顶点的距离相等,∴猫应该蹲守在△ABC三边垂直平分线的交点处.故选A分析:根据题意,知猫应该到三个洞口的距离相等,则此点就是三角形三边垂直平分线的交点.11.三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的()A.三条中线的交点B.三边垂直平分线的交点C.三条高的交点D.三条角平分线的交点答案:B解析:解:三角形内有一点到三角形三顶点的距离相等,则这点一定是三角形的三边垂直平分线的交点,故选:B.分析:根据线段垂直平分线的性质:线段垂直平分线上任意一点,到线段两端点的距离相等可得答案.12.△ABC中,AB=AC,AB的垂直平分线与直线AC相交所成锐角为40°,则此等腰三角形的顶角为()A.50°B.60°C.150°D.50°或130°答案:D解析:解:(1)当AB的中垂线MN与AC相交时易得∠A=90°-40°=50°,(2)当AB的中垂线MN与CA的延长线相交时,易得∠DAB=90°-40°=50°,∴∠A=130°,故选D.分析:此题根据△ABC中∠A为锐角与钝角分为两种情况解答.13.如图,在Rt△ABC中,∠C=90°,直线DE是斜边AB的垂直平分线交AC于D.若AC=8,BC=6,则△DBC的周长为()A.12B.14C.16答案:B解析:解:∵DE是AB的垂直平分线,∴DA=DB,∴△DBC的周长为CB+CD+DB=CB+CD+DA=BC+CA=6+8=14,故选:B分析:根据线段的垂直平分线上的点到线段的两个端点的距离相等得到DA=DB,根据三角形周长公式求出周长.14.如图,在△ABC中,AB=A,AC=B,BC边上的垂直平分线DE交BC、BA分别于点D、E,则△AEC的周长等于()A.A+BB.A-BC.2A+BD.A+2B答案:A解析:解:∵ED垂直且平分BC,∴BE=CE.∵AB=A,AC=B,∴AB=AE+BE=AE+CE=A.∴△AEC的周长为:AE+EC+AC=A+B.故选A分析:要求三角形的周长,知道AC=B,只要求得AE+EC即可,由DE是BC的垂直平分线,结合线段的垂直平分线的性质,知EC=BE,这样三角形周长的一部分AE+EC=AE+BE=AB,代入数值,答案可得.15.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处答案:C解析:解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.分析:要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.二、填空题16.△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于E,交BC于F.若FC=3cm,则BF=_________.答案:6cm解析:解:连接AF.∵AB=AC,∠BAC=120°,∴∠B=∠C=30°;∵AC的垂直平分线EF交AC于点E,交BC于点F,∴CF=AF,∠FAC=30°,∴∠BAF=90°,∴BF=2AF(30°直角边等于斜边的一半),∴BF=2CF=6cm.故答案是:6cm

分析:利用辅助线,连接AF,求出CF=AF,∠BAF=90°,再根据AB=AC,∠BAC=120°可求出∠B的度数,由直角三角形的性质即可求出BF=2AF=2CF=6cm.17.如图,ED为△ABC的AC边的垂直平分线,且AB=5,△BCE的周长为8,则BC=________.

答案:3解析:解:∵ED为AC上的垂直平分线,∴AE=EC,∵AB=AE+EB=5,△BCE的周长=AE+BE+BC=AB+BC=8,∴BC=8-5=3.故答案为:3分析:根据ED为AC上的垂直平分线,得出AE=CE,再根据AB=5,△BCE的周长为AB+BC=8,即可求得BC.18.如图,已知在△ABC中,AB=AC=10,DE垂直平分AB,垂足为E,DE交AC于D,若△BDC的周长为16,则BC=__________.

答案:6解析:解:∵DE垂直平分AB,∴AD=BD,∴AD+CD=BD+CD,即AC=BD+CD,∵AC=10,△BDC的周长为16,∴BC=16-AC=16-10=6.故答案为:6分析:先根据DE垂直平分AB可知,AD=BD,即AC=BD+CD,再由AC=10,△BDC的周长为16即可求出答案.19.如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=答案:15解析:解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°-40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=65°,∴∠DBC=∠ABC-∠ABD=65°-50°=15°,故答案为:15分析:根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.20.点P在线段AB的垂直平分线上,PA=7,则PB=_________.答案:7解析:解:∵点P在线段AB的垂直平分线上,PA=7,∴PB=PA=7,故答案为:7分析:根据线段垂直平分线的性质得出PA=PB,代入即可求出答案.三、解答题21.某公园有海盗船、摩天轮、碰碰车三个娱乐项目,现要在公园内建一个售票中心,使三个娱乐项目所处位置到售票中心的距离相等,请在图中确定售票中心的位置.答案:解:如图,①连接AB,AC,②分别作线段AB,AC的垂直平分线,两垂直平分线相较于点P,则P即为售票中心解析:由三个娱乐项目所处位置到售票中心的距离相等,可得售票中心是海盗船、摩天轮、碰碰车三个娱乐场组成三角形的三边的垂直平分线的交点.22.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB,BC于D,E.若∠CAE=∠B+30°,求∠AEB的度数答案:140°解析:解:∵DE垂直平分AB,∴AE=BE,∴∠B=∠EAB.∵∠C=90°,∠CAE=∠B+30°,∴∠B+30°+∠B+∠B=90°,∴∠B=20°,∴∠AEB=180°-20°-20°=140°.分析:根据线段垂直平分线求出AE=BE,推出∠B=∠EAB,根据已知和三角形内角和定理得出∠B+30°+∠B+∠B=90°,求出∠B,即可得出答案.23.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)求证:△ABD是等腰三角形;(2)若∠A=40°,求∠DBC的度数;(3)若AE=6,△CBD的周长为20,求△ABC的周长答案:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形.(2)30°(3)32解析:解:(1)证明:∵AB的垂直平分线MN交AC于点D,∴DB=DA,∴△ABD是等腰三角形;(2)∵△ABD是等腰三角形,∠A=40°,∴∠ABD=∠A=40°,∠ABC=∠C=(180°-40°)÷2=70°.∴∠BDC=∠ABC-∠ABD=70°-40°=30°.(3)∵AB的垂直平分线MN交AC于点D,AE=6,∴AB=2AD=12.∵△CBD的周长为20,∴AC+BC=20,∴△ABC的周长=AB+AC+BC=12+20=32.分析:(1)根据线段的垂直平分线到线段两端点的距离相等即可得证;(2)首先利用三角形内角和求得∠ABC的度数,然后减去∠ABD的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论