浙江省浔溪中学初三数学上册期中试卷含答_第1页
浙江省浔溪中学初三数学上册期中试卷含答_第2页
浙江省浔溪中学初三数学上册期中试卷含答_第3页
浙江省浔溪中学初三数学上册期中试卷含答_第4页
浙江省浔溪中学初三数学上册期中试卷含答_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第28页浙江省浔溪中学2023初三数学上册期中试卷(含答案解析)浙江省浔溪中学2023初三数学上册期中试卷(含答案解析)一、选择题〔共10小题,每题3分,总分值30分〕1.抛物线y=2〔x﹣3〕2﹣1的对称轴是直线〔〕A.x=﹣1B.x=2C.x=3D.x=﹣32.以下事件中,是不确定事件的是〔〕A.任意选择某一电视频道,它正在播放动画片B.一个三角形三个内角的和是180°C.不在同一条直线上的三点确定一个圆D.在一个装着白球和黑球的袋中摸球,摸出红球3.三角形的外心是三角形中〔〕A.三条高的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,那么摸到黄球的概率是〔〕A.B.C.D.5.在△ABC中,AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,那么以下说法正确的选项是〔〕A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定6.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,那么水面宽AB为〔〕A.4mB.5mC.6mD.8m7.二次函数y=ax2+bx+c的图象如下图,那么以下结论正确的选项是〔〕A.a>0B.c<0C.b2﹣4ac<0D.a+b+c>08.抛物线y=﹣x2+bx+c上局部点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…从上表可知,以下说法正确的个数是〔〕①抛物线与x轴的一个交点为〔﹣2,0〕;②抛物线与y轴的交点为〔0,6〕;③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.A.1B.2C.3D.49.在直角坐标系中,抛物线y=2x2图象不动,如果把X轴向下平移一个单位,把Y轴向右平移3个单位,那么此时抛物线的解析式为〔〕A.y=2〔x+3〕2+1B.y=2〔x+1〕2﹣3C.y=2〔x﹣3〕2+1D.y=2〔x﹣1〕2+310.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.假设抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为抛物线的“内接格点三角形〞.以O为坐标原点建立如下图的平面直角坐标系,假设抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,那么满足上述条件且对称轴平行于y轴的抛物线条数是〔〕A.16B.15C.14D.13二、填空题〔共6小题,每题4分,总分值24分〕11.二次函数y=﹣2〔x+3〕2+5的最大值是.12.有10张卡片,每张卡片上分别写有不同的从1到10的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.13.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是点.14.二次函数y=x2﹣2x,假设点A〔0,y1〕,B〔1,y2〕在此函数图象上,那么y1与y2的大小关系是.15.如图,函数与y=ax2+bx〔a>0,b>0〕的图象交于点P,点P的纵坐标为1,那么关于x的不等式ax2+bx>0的解为.16.函数y=x,y=x2和y=的图象如下图,假设x2>x>,那么x的取值范围是.三、解答题〔共8小题,总分值66分〕17.如图,正方形网格中,△ABC为格点三角形〔顶点都是格点〕,将△ABC绕点A按逆时针方向旋转90°得到△AB1C1〔B与B1是对应点〕.请你在正方形网格中,作出△AB1C1.18.在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D〔如图〕.〔1〕求证:AC=BD;〔2〕假设大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.19.抛物线y=﹣x2+〔m﹣1〕x+m与y轴交于点〔0,3〕.〔1〕求抛物线的解析式;〔2〕求抛物线与坐标轴的交点坐标;〔3〕①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?20.在3×3的方格纸中,点A、B、C、D、E、F分别位于如下图的小正方形的顶点上.〔1〕从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,那么所画三角形是等腰三角形的概率是;〔2〕从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是〔用树状图或列表法求解〕.21.廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图,以水面AB所在直线为x轴,AB中点O为原点,建立平面直角坐标系.水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的平安,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.〔结果保存根号〕22.某公司销售一种进价为20元/个的计算器,其销售量y〔万个〕与销售价格x〔元/个〕的变化如下表:价格x〔元/个〕…30405060…销售量y〔万个〕…5432…〔1〕y关于x是一次函数,求出y与x的函数表达式.〔2〕求出该公司销售这种计算器的利润z〔万元〕与销售价格x〔元/个〕的函数解析式,销售价格定为多少元时利润最大,最大值是多少?23.如图,在半径为2的扇形OAB中,∠AOB=90°,点C是上的一个动点〔不与点A,B重合〕,OD⊥BC,OE⊥AC,垂足分别为D,E.〔1〕当BC=2时,求线段OD的长和∠BOD的度数;〔2〕在△DOE中,是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.〔3〕在△DOE中,是否存在度数保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.24.如图,抛物线y=x2+bx与直线y=2x交于点O〔0,0〕,A〔a,12〕,点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.〔1〕求抛物线的函数表达式;〔2〕设点B的横坐标为m,当m取何值时,BE的长到达最大值,并求出该最大值;〔3〕以BC,BE为边构造矩形BCDE,设点D的坐标为〔m,n〕,求出m,n之间的关系式.浙江省浔溪中学2023初三数学上册期中试卷(含答案解析)参考答案与试题解析一、选择题〔共10小题,每题3分,总分值30分〕1.抛物线y=2〔x﹣3〕2﹣1的对称轴是直线〔〕A.x=﹣1B.x=2C.x=3D.x=﹣3考点:二次函数的性质.分析:此题直接利用抛物线顶点式的特殊形式即可求得对称轴.解答:解:∵y=2〔x﹣3〕2﹣1∴其对称轴为x=3,应选C.点评:此题主要考查了求抛物线的对称轴和顶点坐标的方法,属于根底题,比拟简单.2.以下事件中,是不确定事件的是〔〕A.任意选择某一电视频道,它正在播放动画片B.一个三角形三个内角的和是180°C.不在同一条直线上的三点确定一个圆D.在一个装着白球和黑球的袋中摸球,摸出红球考点:随机事件.分析:不确定事件就是可能发生也可能不发生的事件,根据定义判断.解答:解:A、正确;B、是必然事件,选项错误;C、是必然事件,选项错误;D、是不可能事件,选项错误.应选A.点评:此题考查了确定事件和不确定事件,解决此题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.三角形的外心是三角形中〔〕A.三条高的交点B.三条中线的交点C.三条角平分线的交点D.三边垂直平分线的交点考点:三角形的外接圆与外心.分析:根据外心的定义即可判断.解答:解:三角形的外心是三角形三边垂直平分线的交点.应选D.点评:此题是一个需要熟记的内容.4.一个不透明的袋中装有除颜色外其余均相同的5个红球和3个黄球,从中随机摸出一个,那么摸到黄球的概率是〔〕A.B.C.D.考点:概率公式.分析:让黄球的个数除以球的总个数即为所求的概率.解答:解:袋中共有5+3=8〔个〕两种不同颜色的球,随机从袋中取一个球的所有可能结果为m=8,取到黄球的结果n=3,所以P〔取到黄球〕=.应选:C.点评:此题考查对概率意义的理解及概率的求法,明确概率的意义是解答的关键,用到的知识点为:概率等于所求情况数与总情况数之比.5.在△ABC中,AB=AC=4cm,BC=6cm,D是BC的中点,以D为圆心作一个半径为3cm的圆,那么以下说法正确的选项是〔〕A.点A在⊙D外B.点A在⊙D上C.点A在⊙D内D.无法确定考点:点与圆的位置关系.分析:连接AD,求出AD⊥BC,求出BD,根据勾股定理求出AD,和半径比拟即可.解答:解:连接AD,∵AB=AC=4cm,BC=6cm,D是BC的中点,∴BD=CD=3cm,AD⊥BC,∴∠ADB=90°,∴在Rt△ADB中,由勾股定理得:AD===,∵<3,∴点A在⊙D内,应选C.点评:此题考查了等腰三角形的性质,勾股定理,直线和圆的位置关系的应用,关键是求出AD的长.6.绍兴是著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,那么水面宽AB为〔〕A.4mB.5mC.6mD.8m考点:垂径定理的应用;勾股定理.分析:连接OA,根据桥拱半径OC为5m,求出OA=5m,根据CD=8m,求出OD=3m,根据AD=求出AD,最后根据AB=2AD即可得出答案.解答:解:连接OA,∵桥拱半径OC为5m,∴OA=5m,∵CD=8m,∴OD=8﹣5=3m,∴AD===4m,∴AB=2AD=2×4=8〔m〕;应选;D.点评:此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.二次函数y=ax2+bx+c的图象如下图,那么以下结论正确的选项是〔〕A.a>0B.c<0C.b2﹣4ac<0D.a+b+c>0考点:二次函数图象与系数的关系.专题:压轴题.分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.解答:解:A、由二次函数的图象开口向下可得a<0,应选项错误;B、由抛物线与y轴交于x轴上方可得c>0,应选项错误;C、由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2﹣4ac>0,应选项错误;D、把x=1代入y=ax2+bx+c得:y=a+b+c,由函数图象可以看出x=1时二次函数的值为正,正确.应选D.点评:主要考查图象与二次函数系数之间的关系,二次函数与方程之间的转换,根的判别式的熟练运用.会利用特殊值代入法求得特殊的式子,如:y=a+b+c,y=a﹣b+c,然后根据图象判断其值.8.抛物线y=﹣x2+bx+c上局部点的横坐标x,纵坐标y的对应值如下表:x…﹣2﹣1012…y…04664…从上表可知,以下说法正确的个数是〔〕①抛物线与x轴的一个交点为〔﹣2,0〕;②抛物线与y轴的交点为〔0,6〕;③抛物线的对称轴是x=1;④在对称轴左侧y随x增大而增大.A.1B.2C.3D.4考点:抛物线与x轴的交点.专题:压轴题;图表型.分析:从表中知道当x=﹣2时,y=0,当x=0时,y=6,由此可以得到抛物线与x轴的一个交点坐标和抛物线与y轴的交点坐标,从表中还知道当x=﹣1和x=2时,y=4,由此可以得到抛物线的对称轴方程,同时也可以得到在对称轴左侧y随x增大而增大.解答:解:从表中知道:当x=﹣2时,y=0,当x=0时,y=6,∴抛物线与x轴的一个交点为〔﹣2,0〕,抛物线与y轴的交点为〔0,6〕,从表中还知道:当x=﹣1和x=2时,y=4,∴抛物线的对称轴方程为x=×〔﹣1+2〕=0.5,同时也可以得到在对称轴左侧y随x增大而增大.所以①②④正确.应选C.点评:此题主要考查了抛物线与坐标轴的交点坐标与自变量和的函数值的对应关系,也考查了利用自变量和对应的函数值确定抛物线的对称轴和增减性.9.在直角坐标系中,抛物线y=2x2图象不动,如果把X轴向下平移一个单位,把Y轴向右平移3个单位,那么此时抛物线的解析式为〔〕A.y=2〔x+3〕2+1B.y=2〔x+1〕2﹣3C.y=2〔x﹣3〕2+1D.y=2〔x﹣1〕2+3考点:二次函数图象与几何变换.分析:根据平移确定出抛物线的顶点在新坐标系中的坐标,然后利用顶点式解析式写出即可.解答:解:抛物线y=2x2的顶点坐标为〔0,0〕,∵把x轴向下平移一个单位,把y轴向右平移3个单位,∴在新坐标系中抛物线的顶点坐标为〔﹣3,1〕,∴抛物线的解析式为y=2〔x+3〕2+1.应选A.点评:此题考查了二次函数图象与几何变换,利用顶点的变化确定函数解析式的变化更简便易懂.10.如图,在10×10的网格中,每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点.假设抛物线经过图中的三个格点,那么以这三个格点为顶点的三角形称为抛物线的“内接格点三角形〞.以O为坐标原点建立如下图的平面直角坐标系,假设抛物线与网格对角线OB的两个交点之间的距离为,且这两个交点与抛物线的顶点是抛物线的内接格点三角形的三个顶点,那么满足上述条件且对称轴平行于y轴的抛物线条数是〔〕A.16B.15C.14D.13考点:二次函数综合题.专题:压轴题.分析:根据在OB上的两个交点之间的距离为3可知两交点的横坐标的差为3,然后作出最左边开口向下的抛物线,再向右平移1个单位,向上平移1个单位得到开口向下的抛物线的条数,同理可得开口向上的抛物线的条数,然后相加即可得解.解答:解:如图,开口向下,经过点〔0,0〕,〔1,3〕,〔3,3〕的抛物线的解析式为y=﹣x2+4x,然后向右平移1个单位,向上平移1个单位一次得到一条抛物线,可平移6次,所以,一共有7条抛物线,同理可得开口向上的抛物线也有7条,所以,满足上述条件且对称轴平行于y轴的抛物线条数是:7+7=14.应选:C.点评:此题是二次函数综合题型,主要考查了网格结构的知识与二次函数的性质,二次函数图象与几何变换,作出图形更形象直观.二、填空题〔共6小题,每题4分,总分值24分〕11.二次函数y=﹣2〔x+3〕2+5的最大值是5.考点:二次函数的最值.分析:所给形式是二次函数的顶点式,易知其顶点坐标是〔﹣3,5〕,也就是当x=3时,函数有最大值5.解答:解:∵y=﹣2〔x+3〕2+5,∴此函数的顶点坐标是〔﹣3,5〕,即当x=3时,函数有最大值5.故答案是:5.点评:此题考查了二次函数的最值,解题关键是掌握二次函数顶点式,并会根据顶点式求最值.12.有10张卡片,每张卡片上分别写有不同的从1到10的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是.考点:概率公式.分析:由有10张卡片,每张卡片上分别写有不同的从1到10的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的有3,6,9,直接利用概率公式求解即可求得答案.解答:解:∵有10张卡片,每张卡片上分别写有不同的从1到10的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的有3,6,9,∴卡片上的数是3的倍数的概率是:.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.13.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是点Q.考点:垂径定理的应用.专题:作图题.分析:根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.解答:解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故答案为:Q.点评:此题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.14.二次函数y=x2﹣2x,假设点A〔0,y1〕,B〔1,y2〕在此函数图象上,那么y1与y2的大小关系是y1>y2.考点:二次函数图象上点的坐标特征.专题:计算题.分析:分别计算出自变量为0和1时的函数值,然后比拟函数值的大小即可.解答:解:当x=0时,y1=x2﹣2x=0;当x=1时,y2=x2﹣2x=1﹣2=﹣1,所以y1>y2.故答案为y1>y2.点评:此题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.15.如图,函数与y=ax2+bx〔a>0,b>0〕的图象交于点P,点P的纵坐标为1,那么关于x的不等式ax2+bx>0的解为x<﹣3或x>0.考点:二次函数与不等式〔组〕.专题:数形结合.分析:所求不等式变形后,可以看做求二次函数的函数值大于反比例函数值时x的范围,由二次函数与反比例函数图象的交点,利用图象即可得到满足题意的x的范围,即为所求不等式的解集.解答:解:∵反比例函数与二次函数图象交于点P,且P的纵坐标为1,∴将y=1代入反比例函数y=﹣得:x=﹣3,∴P的坐标为〔﹣3,1〕,将所求的不等式变形得:ax2+bx>﹣,由图象可得:x<﹣3或x>0,那么关于x的不等式ax2+bx>0的解为x<﹣3或x>0.故答案为:x<﹣3或x>0.点评:此题考查了二次函数与不等式〔组〕,利用了数形结合的数学思想,数形结合是数学中的重要思想之一,解决函数问题更是如此,同学们要引起重视.16.函数y=x,y=x2和y=的图象如下图,假设x2>x>,那么x的取值范围是x>1.考点:二次函数与不等式〔组〕.分析:求出三个函数的交点坐标,然后根据函数图象写出交点右边局部的x的取值范围即可.解答:解:联立解得,所以,交点为〔1,1〕,所以,假设x2>x>,那么x的取值范围是x>1.故答案为:x>1.点评:此题考查了二次函数与不等式组,此类题目利用数形结合的思想求解是解题的关键.三、解答题〔共8小题,总分值66分〕17.如图,正方形网格中,△ABC为格点三角形〔顶点都是格点〕,将△ABC绕点A按逆时针方向旋转90°得到△AB1C1〔B与B1是对应点〕.请你在正方形网格中,作出△AB1C1.考点:作图-旋转变换.分析:分别作出点A、B、C绕点A按逆时针方向旋转90°后得到的点,然后顺次连接即可.解答:解:所作图形如下图:点评:此题考查了根据旋转变换作图,解答此题的关键是根据网格结构作出各点的对应点.18.在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D〔如图〕.〔1〕求证:AC=BD;〔2〕假设大圆的半径R=10,小圆的半径r=8,且圆O到直线AB的距离为6,求AC的长.考点:垂径定理;勾股定理.专题:几何综合题.分析:〔1〕过O作OE⊥AB,根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD;〔2〕由〔1〕可知,OE⊥AB且OE⊥CD,连接OC,OA,再根据勾股定理求出CE及AE的长,根据AC=AE﹣CE即可得出结论.解答:〔1〕证明:过O作OE⊥AB于点E,那么CE=DE,AE=BE,∴BE﹣DE=AE﹣CE,即AC=BD;〔2〕解:由〔1〕可知,OE⊥AB且OE⊥CD,连接OC,OA,∴OE=6,∴CE===2,AE===8,∴AC=AE﹣CE=8﹣2.点评:此题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.19.抛物线y=﹣x2+〔m﹣1〕x+m与y轴交于点〔0,3〕.〔1〕求抛物线的解析式;〔2〕求抛物线与坐标轴的交点坐标;〔3〕①当x取什么值时,y>0?②当x取什么值时,y的值随x的增大而减小?考点:待定系数法求二次函数解析式;二次函数的性质;抛物线与x轴的交点.分析:〔1〕将点〔0,3〕代入抛物线的解析式中,即可求得m的值;〔2〕可以令y=0,可得出一个关于x的一元二次方程,方程的解就是抛物线与x轴交点的横坐标;〔3〕根据〔2〕中抛物线与x轴的交点以及抛物线的开口方向即可求得x的取值范围.解答:解:〔1〕将点〔0,3〕代入抛物线y=﹣x2+〔m﹣1〕x+m,m=3,∴抛物线的解析式y=﹣x2+2x+3;〔2〕令y=0,﹣x2+2x+3=0,解得x1=3,x2=﹣1;X轴:A〔3,0〕、B〔﹣1,0〕;Y轴:C〔0,3〕〔3〕抛物线开口向下,对称轴x=1;所以〕①当﹣1<x<3时,y>0;②当x≥1时,y的值随x的增大而减小.点评:此题考查了二次函数解析式确实定.注意数形结合的思想,能够根据图象分析一元二次不等式的解集.20.〔6分〕在3×3的方格纸中,点A、B、C、D、E、F分别位于如下图的小正方形的顶点上.〔1〕从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,那么所画三角形是等腰三角形的概率是;〔2〕从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是〔用树状图或列表法求解〕.考点:列表法与树状图法;等腰三角形的判定;平行四边形的判定.分析:〔1〕根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案;〔2〕利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率.解答:解:〔1〕根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,故P〔所画三角形是等腰三角形〕=;〔2〕用“树状图〞或利用表格列出所有可能的结果:∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,∴所画的四边形是平行四边形的概率P==.故答案为:〔1〕,〔2〕.点评:此题主要考查了利用树状图求概率,根据正确列举出所有结果,进而得出概率是解题关键.21.廊桥是我国古老的文化遗产,如图,是某座抛物线型的廊桥示意图,以水面AB所在直线为x轴,AB中点O为原点,建立平面直角坐标系.水面AB宽40米,抛物线最高点C到水面AB的距离为10米,为保护廊桥的平安,在该抛物线上距水面AB高为8米的点E,F处要安装两盏警示灯,求这两盏灯的水平距离EF.〔结果保存根号〕考点:二次函数的应用.分析:利用待定系数法求得抛物线的解析式.抛物线上距水面AB高为8米的E、F两点,可知E、F两点纵坐标为8,把y=8代入抛物线解析式,可求E、F两点的横坐标,根据抛物线的对称性求EF长.解答:解:由题意知,A〔﹣20,0〕,B〔20,0〕,C〔0,10〕.设过点A、B、C的抛物线方程为:y=a〔x+20〕〔x﹣20〕〔a<0〕.把点C〔0,10〕的坐标代入,得10=a〔0+20〕〔0﹣20〕,解得a=﹣,那么该抛物线的解析式为:y=﹣〔x+20〕〔x﹣20〕=﹣x2+10把y=8代入,得﹣x2+10=8,即x2=80,x1=4,x2=﹣4.所以两盏警示灯之间的水平距离为:EF=|x1﹣x2|=|4﹣〔﹣4〕|=8〔m〕.点评:此题考查的是二次函数在实际生活中的应用,注意利用函数对称的性质来解决问题.22.某公司销售一种进价为20元/个的计算器,其销售量y〔万个〕与销售价格x〔元/个〕的变化如下表:价格x〔元/个〕…30405060…销售量y〔万个〕…5432…〔1〕y关于x是一次函数,求出y与x的函数表达式.〔2〕求出该公司销售这种计算器的利润z〔万元〕与销售价格x〔元/个〕的函数解析式,销售价格定为多少元时利润最大,最大值是多少?考点:二次函数的应用.分析:〔1〕设y与x的函数关系式为y=kx+b,由待定系数法求出其值即可;〔2〕由销售问题的数量关系利润=每个利润×数量建立z与x的函数关系式,由函数的性质就可以求出结论.解答:解:〔1〕设y与x的函数关系式为y=kx+b,由题意,得解得:.答:y与x的函数表达式为y=﹣0.1x+8;〔2〕由题意,得z=〔x﹣20〕〔﹣0.1x+8〕,z=﹣0.1x2+10x﹣160,z=﹣0.1〔x﹣50〕2+90,∴a=﹣0.1<0,∴x=50时,z最大=90.答:利润z〔万元〕与销售价格x〔元/个〕的函数解析式为:z=﹣0.1x2+10x﹣160,销售价格定为50元时利润最大,最大值是90万元.点评:此题考查了待定系数法求一次函数的解析式的运用,销售问题的数量关系利润=每个利润×数量的运用,二次函数的解析式的性质的运用,解答时求出二次函数的解析式是关键.23.如图,在半径为2的扇形OAB中,∠AOB=90°,点C是上的一个动点〔不与点A,B重合〕,OD⊥BC,OE⊥AC,垂足分别为D,E.〔1〕当BC=2时,求线段OD的长和∠BOD的度数;〔2〕在△DOE中,是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.〔3〕在△DOE中,是否存在度数保持不变的角?如果存在,请指出并求其度数;如果不存在,请说明理由.考点:垂径定理;三角形中位线定理.分析:〔1〕根据垂径定理及勾股定理即可解决问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论