




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数的图象可能为()A. B.C. D.2.如图,是圆的一条直径,为半圆弧的两个三等分点,则()A. B. C. D.3.双曲线的渐近线方程是()A. B. C. D.4.设不等式组,表示的平面区域为,在区域内任取一点,则点的坐标满足不等式的概率为A. B.C. D.5.中国古代数学名著《九章算术》中记载了公元前344年商鞅督造的一种标准量器——商鞅铜方升,其三视图如图所示(单位:寸),若取3,当该量器口密闭时其表面积为42.2(平方寸),则图中x的值为()A.3 B.3.4 C.3.8 D.46.已知全集U=x|x2≤4,x∈Z,A.-1 B.-1,0 C.-2,-1,0 D.-2,-1,0,1,27.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、8.过双曲线左焦点的直线交的左支于两点,直线(是坐标原点)交的右支于点,若,且,则的离心率是()A. B. C. D.9.如图,矩形ABCD中,,,E是AD的中点,将沿BE折起至,记二面角的平面角为,直线与平面BCDE所成的角为,与BC所成的角为,有如下两个命题:①对满足题意的任意的的位置,;②对满足题意的任意的的位置,,则()A.命题①和命题②都成立 B.命题①和命题②都不成立C.命题①成立,命题②不成立 D.命题①不成立,命题②成立10.已知是椭圆和双曲线的公共焦点,是它们的-一个公共点,且,设椭圆和双曲线的离心率分别为,则的关系为()A. B.C. D.11.已知向量,则()A.∥ B.⊥ C.∥() D.⊥()12.金庸先生的武侠小说《射雕英雄传》第12回中有这样一段情节,“……洪七公道:肉只五种,但猪羊混咬是一般滋味,獐牛同嚼又是一般滋味,一共有几般变化,我可算不出了”.现有五种不同的肉,任何两种(含两种)以上的肉混合后的滋味都不一样,则混合后可以组成的所有不同的滋味种数为()A.20 B.24 C.25 D.26二、填空题:本题共4小题,每小题5分,共20分。13.已知一个圆锥的底面积和侧面积分别为和,则该圆锥的体积为________14.已知关于的不等式对于任意恒成立,则实数的取值范围为_________.15.已知点是抛物线的焦点,,是该抛物线上的两点,若,则线段中点的纵坐标为__________.16.“北斗三号”卫星的运行轨道是以地心为一个焦点的椭圆.设地球半径为R,若其近地点、远地点离地面的距离大约分别是,,则“北斗三号”卫星运行轨道的离心率为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.18.(12分)记无穷数列的前项中最大值为,最小值为,令,则称是“极差数列”.(1)若,求的前项和;(2)证明:的“极差数列”仍是;(3)求证:若数列是等差数列,则数列也是等差数列.19.(12分)近年空气质量逐步恶化,雾霾天气现象出现增多,大气污染危害加重.大气污染可引起心悸.呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机的对入院人进行了问卷调查得到了如下的列联表:患心肺疾病不患心肺疾病合计男女合计已知在全部人中随机抽取人,抽到患心肺疾病的人的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为患心肺疾病与性别有关?请说明你的理由;(2)已知在不患心肺疾病的位男性中,有位从事的是户外作业的工作.为了指导市民尽可能地减少因雾霾天气对身体的伤害,现从不患心肺疾病的位男性中,选出人进行问卷调查,求所选的人中至少有一位从事的是户外作业的概率.下面的临界值表供参考:(参考公式,其中)20.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.21.(12分)已知函数f(x)=x-1+x+2,记f(x)(Ⅰ)解不等式f(x)≤5;(Ⅱ)若正实数a,b满足1a+122.(10分)已知函数()的图象在处的切线为(为自然对数的底数)(1)求的值;(2)若,且对任意恒成立,求的最大值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
先根据是奇函数,排除A,B,再取特殊值验证求解.【详解】因为,所以是奇函数,故排除A,B,又,故选:C【点睛】本题主要考查函数的图象,还考查了理解辨析的能力,属于基础题.2、B【解析】
连接、,即可得到,,再根据平面向量的数量积及运算律计算可得;【详解】解:连接、,,是半圆弧的两个三等分点,,且,所以四边形为棱形,.故选:B【点睛】本题考查平面向量的数量积及其运算律的应用,属于基础题.3、C【解析】
根据双曲线的标准方程即可得出该双曲线的渐近线方程.【详解】由题意可知,双曲线的渐近线方程是.故选:C.【点睛】本题考查双曲线的渐近线方程的求法,是基础题,解题时要认真审题,注意双曲线的简单性质的合理运用.4、A【解析】
画出不等式组表示的区域,求出其面积,再得到在区域内的面积,根据几何概型的公式,得到答案.【详解】画出所表示的区域,易知,所以的面积为,满足不等式的点,在区域内是一个以原点为圆心,为半径的圆面,其面积为,由几何概型的公式可得其概率为,故选A项.【点睛】本题考查由约束条件画可行域,求几何概型,属于简单题.5、D【解析】
根据三视图即可求得几何体表面积,即可解得未知数.【详解】由图可知,该几何体是由一个长宽高分别为和一个底面半径为,高为的圆柱组合而成.该几何体的表面积为,解得,故选:D.【点睛】本题考查由三视图还原几何体,以及圆柱和长方体表面积的求解,属综合基础题.6、C【解析】
先求出集合U,再根据补集的定义求出结果即可.【详解】由题意得U=x|∵A=1,2∴CU故选C.【点睛】本题考查集合补集的运算,求解的关键是正确求出集合U和熟悉补集的定义,属于简单题.7、A【解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.8、D【解析】
如图,设双曲线的右焦点为,连接并延长交右支于,连接,设,利用双曲线的几何性质可以得到,,结合、可求离心率.【详解】如图,设双曲线的右焦点为,连接,连接并延长交右支于.因为,故四边形为平行四边形,故.又双曲线为中心对称图形,故.设,则,故,故.因为为直角三角形,故,解得.在中,有,所以.故选:D.【点睛】本题考查双曲线离心率,注意利用双曲线的对称性(中心对称、轴对称)以及双曲线的定义来构造关于的方程,本题属于难题.9、A【解析】
作出二面角的补角、线面角、线线角的补角,由此判断出两个命题的正确性.【详解】①如图所示,过作平面,垂足为,连接,作,连接.由图可知,,所以,所以①正确.②由于,所以与所成角,所以,所以②正确.综上所述,①②都正确.故选:A【点睛】本题考查了折叠问题、空间角、数形结合方法,考查了推理能力与计算能力,属于中档题.10、A【解析】
设椭圆的半长轴长为,双曲线的半长轴长为,根据椭圆和双曲线的定义得:,解得,然后在中,由余弦定理得:,化简求解.【详解】设椭圆的长半轴长为,双曲线的长半轴长为,由椭圆和双曲线的定义得:,解得,设,在中,由余弦定理得:,化简得,即.故选:A【点睛】本题主要考查椭圆,双曲线的定义和性质以及余弦定理的应用,还考查了运算求解的能力,属于中档题.11、D【解析】
由题意利用两个向量坐标形式的运算法则,两个向量平行、垂直的性质,得出结论.【详解】∵向量(1,﹣2),(3,﹣1),∴和的坐标对应不成比例,故、不平行,故排除A;显然,•3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),显然,和的坐标对应不成比例,故和不平行,故排除C;∴•()=﹣2+2=0,故⊥(),故D正确,故选:D.【点睛】本题主要考查两个向量坐标形式的运算,两个向量平行、垂直的性质,属于基础题.12、D【解析】
利用组合的意义可得混合后所有不同的滋味种数为,再利用组合数的计算公式可得所求的种数.【详解】混合后可以组成的所有不同的滋味种数为(种),故选:D.【点睛】本题考查组合的应用,此类问题注意实际问题的合理转化,本题属于容易题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
依据圆锥的底面积和侧面积公式,求出底面半径和母线长,再根据勾股定理求出圆锥的高,最后利用圆锥的体积公式求出体积。【详解】设圆锥的底面半径为,母线长为,高为,所以有解得,故该圆锥的体积为。【点睛】本题主要考查圆锥的底面积、侧面积和体积公式的应用。14、【解析】
先将不等式对于任意恒成立,转化为任意恒成立,设,求出在内的最小值,即可求出的取值范围.【详解】解:由题可知,不等式对于任意恒成立,即,又因为,,对任意恒成立,设,其中,由不等式,可得:,则,当时等号成立,又因为在内有解,,则,即:,所以实数的取值范围:.故答案为:.【点睛】本题考查不等式恒成立问题,利用分离参数法和构造函数,通过求新函数的最值求出参数范围,考查转化思想和计算能力.15、2【解析】
运用抛物线的定义将抛物线上的点到焦点距离等于到准线距离,然后求解结果.【详解】抛物线的标准方程为:,则抛物线的准线方程为,设,,则,所以,则线段中点的纵坐标为.故答案为:【点睛】本题考查了抛物线的定义,由抛物线定义将点到焦点距离转化为点到准线距离,需要熟练掌握定义,并能灵活运用,本题较为基础.16、【解析】
画出图形,结合椭圆的定义和题设条件,求得的值,即可求得椭圆的离心率,得到答案.【详解】如图所示,设椭圆的长半轴为,半焦距为,因为地球半径为R,若其近地点、远地点离地面的距离大约分别是,,可得,解得,所以椭圆的离心率为.故答案为:.【点睛】本题主要考查了椭圆的离心率的求解,其中解答中熟记椭圆的几何性质,列出方程组,求得的值是解答的关键,着重考查了推理与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或;(2)见解析【解析】
(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,将其坐标代入椭圆方程中可求出直线的斜率;(2)设出两点的坐标,则点的坐标可以表示出,然后直线的方程与椭圆方程联立成方程,消元后得到关于的一元二次方程,再利用根与系数的关系,再结合直线的方程,化简可得结果.【详解】(1)由条件可知直线的斜率存在,则可设直线的方程为,则,由,有,所以,由在椭圆上,则,解得,此时在椭圆内部,所以满足直线与椭圆相交,故所求直线方程为或.(也可联立直线与椭圆方程,由验证)(2)设,则,直线的方程为.由得,由,解得,,当时,,故直线恒过定点.【点睛】此题考查的是直线与椭圆的位置关系中的过定点问题,计算过程较复杂,属于难题.18、(1)(2)证明见解析(3)证明见解析【解析】
(1)由是递增数列,得,由此能求出的前项和.(2)推导出,,由此能证明的“极差数列”仍是.(3)证当数列是等差数列时,设其公差为,,是一个单调递增数列,从而,,由,,,分类讨论,能证明若数列是等差数列,则数列也是等差数列.【详解】(1)解:∵无穷数列的前项中最大值为,最小值为,,,是递增数列,∴,∴的前项和.(2)证明:∵,,∴,∴,∵,∴,∴的“极差数列”仍是(3)证明:当数列是等差数列时,设其公差为,,根据,的定义,得:,,且两个不等式中至少有一个取等号,当时,必有,∴,∴是一个单调递增数列,∴,,∴,∴,∴是等差数列,当时,则必有,∴,∴是一个单调递减数列,∴,,∴,∴.∴是等差数列,当时,,∵,中必有一个为0,根据上式,一个为0,为一个必为0,∴,,∴数列是常数数列,则数列是等差数列.综上,若数列是等差数列,则数列也是等差数列.【点睛】本小题主要考查新定义数列的理解和运用,考查等差数列的证明,考查数列的单调性,考查化归与转化的数学思想方法,属于难题.19、(1)列联表见解析,有的把握认为患心肺疾病与性别有关,理由见解析;(2).【解析】
(1)结合题意完善列联表,计算出的观测值,对照临界值表可得出结论;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、,利用列举法列举出所有的基本事件,并确定事件“所选的人中至少有一位从事的是户外作业”所包含的基本事件数,利用古典概型的概率公式可取得所求事件的概率.【详解】(1)由于在全部人中随机抽取人,抽到患心肺疾病的人的概率为,所以人中患心肺疾病的人数为人,故可将列联表补充如下:患心肺疾病不患心肺疾病合计男女合计.故有的把握认为患心肺疾病与性别有关;(2)记不患心肺疾病的五位男性中从事户外作业的两人分别为、,其余三人分别为、、.从中选取三人共有以下种情形:、、、、、、、、、.其中至少有一位从事的是户外作业的有种情形,分别为:、、、、、、、、,所以所选的人中至少有一位从事的是户外作业的概率为.【点睛】本题考查利用独立性检验的基本思想解决实际问题,同时也考查了利用列举法求解古典概型的概率问题,考查计算能力,属于中等题.20、(1),;(2),,.【解析】
(1)直接利用同角三角函数关系式的变换的应用求出结果.(2)首先把函数的关系式变形成正弦型函数,进一步利用正弦型函数的性质的应用求出结果.【详解】(1)由题意得,,(2)由,解得,所以对称轴为,.由,解得,所以单调递增区间为.,【点睛】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力,属于基础题型.21、(Ⅰ){x|-3≤x≤2}(Ⅱ)见证明【解析】
(Ⅰ)由题意结合不等式的性质零点分段求解不等式的解集即可;(Ⅱ)首先确定m的值,然后利用柯西不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学生假期家长会课件
- 2024年中国钢坯行业调查报告
- 2025年中国果疏汁饮料行业市场前景预测及投资战略研究报告
- 行业市场未来发展趋势及投资战略可行性研究报告
- 棉花类纤维检验员实操任务书
- 航空导航系统装配调试工职业技能模拟试卷含答案
- 真空电子器件金属零部件制造工理论学习手册练习试题及答案
- 中国电动汽车车载充电机行业全景评估及投资规划建议报告
- 化学试剂生产工(临床试剂工)职业技能鉴定经典试题含答案
- 2025年中国互联网接入产品行业市场调查研究及投资前景预测报告
- GB/T 9576-2013橡胶和塑料软管及软管组合件选择、贮存、使用和维护指南
- GA/T 1323-2016基于荧光聚合物传感技术的痕量炸药探测仪通用技术要求
- 2023年苏州国发创业投资控股有限公司招聘笔试题库及答案解析
- 高中历史《第一次工业革命》说课课件
- 学生集体外出活动备案表
- SH3904-2022年石油化工建设工程项目竣工验收规定
- 叉车检验检测报告
- DNF装备代码大全
- 基于Qt的俄罗斯方块的设计(共25页)
- 古建筑木构件油漆彩绘地仗施工技术分析
- 食堂投诉处理方案
评论
0/150
提交评论