江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析_第1页
江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析_第2页
江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析_第3页
江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析_第4页
江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省无锡市东坡中学2022-2023学年高二数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若函数在其定义域的一个子区间上不是单调函数,则实数t的取值范围是(

)A.

B.

C.

D.

参考答案:B略2.下列有关命题的说法正确的是(

).A.命题“若,则”的否命题为:“若,则”.B.“”是“”的必要不充分条件.C.命题“若,则”的逆否命题为真命题.D.命题“使得”的否定是:“均有”.参考答案:C3.若,则函数和在同一坐标系内的大致图象是(

)参考答案:D4.已知函数的图像如图所示,的导函数,则下列数值排序正确的是(

)A. B.C. D.参考答案:B5.某程序框图如图所示,若输出的S=57,则判断框内为()A.k>4? B.k>5? C.k>6? D.k>7?参考答案:A【考点】程序框图.【分析】分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是累加并输入S的值,条件框内的语句是决定是否结束循环,模拟执行程序即可得到答案.【解答】解:程序在运行过程中各变量值变化如下表:K

S

是否继续循环循环前1

1/第一圈2

4

是第二圈3

11

是第三圈4

26

是第四圈5

57

否故退出循环的条件应为k>4故答案选A.6.“”是“方程表示椭圆”的A.充分不必要条件

B.必要不充分条件

C.充要条件 D.既不充分也不必要条件参考答案:B略7.手机的价格不断降低,若每隔半年其价格降低,则现在价格为2560元的手机,两年后价格可降为(

)A.1440元

B.900元

C.1040元

D.810元参考答案:D8.曲线与轴以及直线所围图形的面积为(

)A.

B.

C.

D.参考答案:B略9.函数的零点所在的区间是(

)A.

B.

C.

D.参考答案:B10.正方体ABCD–A1B1C1D1中,E,F分别是AB、CC1的中点,直线EF与AC1所成角的余弦值是(

)(A)

(B)

(C)

(D)参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.双曲线的渐近线方程是

.参考答案:根据双曲线的渐近线公式得到

12.变量x,y满足(t为参数),则代数式的取值范围是

.参考答案:13.棱长为的正方体的外接球的表面积是________;参考答案:14.用秦九韶算法计算多项式

当时的值为_________。参考答案:015.已知表示两个不同的平面,是一条直线,且,则“”是“”的

条件(填:充分条件、必要条件、充要条件、既不充分也不必要条件)参考答案:充分不必要条件16.某医疗研究所为了检验某种血清预防感冒的作用,把名使用血清的人与另外名未用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用列联表计算得,经查对临界值表知.对此,四名同学做出了以下的判断::有的把握认为“这种血清能起到预防感冒的作用”:若某人未使用该血清,那么他在一年中有的可能性得感冒:这种血清预防感冒的有效率为

:这种血清预防感冒的有效率为

则下列结论中,正确结论的序号是

①;

②;

③;

④参考答案:①④略17.在区间[﹣1,5]上任取一个实数b,则曲线f(x)=x3﹣2x2+bx在点(1,f(1))处切线的倾斜角为钝角的概率为.参考答案:【考点】CF:几何概型.【分析】利用曲线f(x)=x3﹣2x2+bx在点(1,f(1))处切线的倾斜角为钝角,求出b的范围,以长度为测度,即可求出所求概率.【解答】解:∵f(x)=x3﹣2x2+bx,∴f′(x)=3x2﹣4x+b,∴f′(1)=b﹣1<0,∴b<1.由几何概型,可得所求概率为=.故答案为.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知函数f(x)=﹣2(x+a)lnx+x2﹣2ax﹣2a2+a,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.参考答案:【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【专题】创新题型;导数的综合应用.【分析】(Ⅰ)求出函数f(x)的定义域,把函数f(x)求导得到g(x)再对g(x)求导,得到其导函数的零点,然后根据导函数在各区间段内的符号得到函数g(x)的单调期间;(Ⅱ)由f(x)的导函数等于0把a用含有x的代数式表示,然后构造函数φ(x)=x2,由函数零点存在定理得到x0∈(1,e),使得φ(x0)=0.令,u(x)=x﹣1﹣lnx(x≥1),利用导数求得a0∈(0,1),然后进一步利用导数说明当a=a0时,若x∈(1,+∞),有f(x)≥0,即可得到存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【解答】解:(Ⅰ)由已知,函数f(x)的定义域为(0,+∞),g(x)=,∴.当0<a<时,g(x)在上单调递增,在区间上单调递减;当a时,g(x)在(0,+∞)上单调递增.(Ⅱ)由=0,解得,令φ(x)=x2,则φ(1)=1>0,φ(e)=.故存在x0∈(1,e),使得φ(x0)=0.令,u(x)=x﹣1﹣lnx(x≥1),由知,函数u(x)在(1,+∞)上单调递增.∴.即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=φ(x0)=0.由(Ⅰ)知,f′(x)在(1,+∞)上单调递增,故当x∈(1,x0)时,f′(x)<0,从而f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,从而f(x)>f(x0)=0.∴当x∈(1,+∞)时,f(x)≥0.综上所述,存在a∈(0,1),使得f(x)≥0在区间(1,+∞)内恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【点评】本题主要考查导数的运算、导数在研究函数中的应用、函数零点等基础知识,考查推理论证能力、运算求解能力、创新知识,考查了函数与方程、数形结合、分类与整合、化归与转化等数学思想方法,是压轴题.19.如图,在直三棱柱中,,分别是棱上的点(点不同于点),且为的中点.求证:(1)平面平面;(2)直线平面.参考答案:证明:(1)∵是直三棱柱,∴平面。又∵平面,∴。又∵平面,∴平面。又∵平面,∴平面平面。(2)∵,为的中点,∴。又∵平面,且平面,∴。又∵平面,,∴平面。由(1)知,平面,∴∥。又∵平面平面,∴直线平面20.(12分)设命题p:实数m使曲线表示一个圆;命题q:实数m使曲线表示双曲线.若p是q的充分不必要条件,求正实数a的取值范围.参考答案:解:对于命题:;

所以

……2分解得:或

……4分对于命题即或

……8分

是的充分不必要条件

……10分故实数a的取值范围(0,7]

……12分

21.如图,三棱柱中,侧面底面,,且,O为中点.(1)证明:平面;(2)求直线与平面所成角的正弦值;(3)在上是否存在一点,使得平面,若不存在,说明理由;若存在,确定点的位置.参考答案:解:(1)证明:因为,且O为AC的中点,

所以.

又由题意可知,平面平面,交线为,且平面,

所以平面.(2)如图,以O为原点,所在直线分别为x,y,z

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论