




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江西省上饶市铁路职工子第中学2021-2022学年高一数学文期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.定义在上的偶函数满足,且时,则(
)A.
B.
C.
D.参考答案:A2.下面为一个求20个数的平均数的程序,在横线上应填充的语句为(
)S=0i=1DO
INPUT
x
S=S+x
i=i+1LOOPUNTIL
_____a=S/20PRINT
aEND
A.
i>20
B.
i<20
C.
i>=20
D.
i<=20
参考答案:A3.已知集合,则等于(
)(A)
(B)(C)
(D)参考答案:C4.已知函数,其部分图象如下图所示,且直线与曲线所围成的封闭图形的面积为,则(即)的值为()A.0
B.
C.-1
D.
参考答案:B略5.对于数列{an},定义为数列{an}的“好数”,已知某数列{an}的“好数”,记数列的前n项和为Sn,若对任意的恒成立,则实数k的取值范围为(
)A. B. C. D.参考答案:B分析:由题意首先求得的通项公式,然后结合等差数列的性质得到关于k的不等式组,求解不等式组即可求得最终结果.详解:由题意,,则,很明显n≥2时,,两式作差可得:,则an=2(n+1),对a1也成立,故an=2(n+1),则an?kn=(2?k)n+2,则数列{an?kn}为等差数列,故Sn≤S6对任意的恒成立可化为:a6?6k≥0,a7?7k≤0;即,解得:.实数的取值范围为.本题选择B选项.点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.对于此题中的新概念,对阅读理解能力有一定的要求.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.6.如图,在三棱锥S-ABC中,G1,G2分别是△SAB和△SAC的重心,则直线G1G2与BC的位置关系是()A.相交
B.平行C.异面
D.以上都有可能参考答案:B略7.等比数列中,,,则的值为(
)A. B.C.128 D.或参考答案:D【分析】根据等比数列的通项公式得到公比,进而得到通项.【详解】设公比为,则,∴,∴或,∴或,即或.故选D.【点睛】本题考查了等比数列通项公式的应用,属于简单题.8.在中,已知成等差数列,且,则(
)A.2
B.
C.
D.参考答案:B9.若,则角的终边在(
)
A.第二象限
B.第四象限
C.第二、四象限
D.第三、四象限参考答案:C略10.2log510+log50.25=()A.0 B.1 C.2 D.4参考答案:C【考点】对数的运算性质.【分析】根据对数运算法则可直接得到答案.【解答】解:∵2log510+log50.25=log5100+log50.25=log525=2故选C.【点评】本题主要考查对数的运算法则.二、填空题:本大题共7小题,每小题4分,共28分11.已知数列的前四项为,写出该数列一个可能的通项公式为=
。参考答案:12.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为___________.参考答案:
13.数列{an}满足+++…+=3n+1,则数列{an}的通项公式为an=.参考答案:(2n﹣1)?2?3n【考点】数列的求和.【分析】利用方程组法,两式相减可求数列{an}的通项公式.【解答】解:数列{an}满足+++…+=3n+1…①则有:+++…+=3n…②,由①﹣②可得:=3n+1﹣3n=2?3n∴an=(2n﹣1)?2?3n故答案为:(2n﹣1)?2?3n14.(5分)函数f(x)=sin(2x﹣)的最小正周期是
.参考答案:π考点: 正弦函数的图象.专题: 三角函数的图像与性质.分析: 根据三角函数的周期公式进行求解即可解答: 由正弦函数的周期公式得函数的周期T=,故答案为:π点评: 本题主要考查三角函数的周期的计算,比较基础.15.口袋内有100个大小相同的红球、白球和黑球,其中有45个红球,从中摸出1个球,摸出白球的概率为0.23,则摸出黑球的概率为.参考答案:0.32【考点】C7:等可能事件的概率.【分析】因为口袋内有100个大小相同的红球、白球和黑球,从中摸出1个球,摸出白球的概率为0.23,所以可求出口袋内白球数.再根据其中有45个红球,可求出黑球数,最后,利用等可能性事件的概率求法,就可求出从中摸出1个球,摸出黑球的概率.【解答】解:∵口袋内有100个大小相同的红球、白球和黑球从中摸出1个球,摸出白球的概率为0.23,∴口袋内白球数为32个,又∵有45个红球,∴为32个.从中摸出1个球,摸出黑球的概率为=0.32故答案为0.3216.若函数的近似解在区间,则
▲
.参考答案:17.已知,则=
.参考答案:-1三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量(吨)之间的函数关系式可以近似地表示为,已知此生产线年产量最大为210吨。
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求每吨产品平均最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?参考答案:解:(1)生产每吨产品的平均成本为,
由于,当且仅当时,即时等号成立。
答:年产量为200吨时,每吨平均成本最低为32万元;
(2)设年利润为,则
,
由于在上为增函数,故当时,的最大值为1660。答:年产量为210吨时,可获得最大利润1660万元。
19.已知函数f(x)=4sin2(+)?sinx+(cosx+sinx)(cosx﹣sinx)﹣1.(1)化简f(x);(2)常数ω>0,若函数y=f(ωx)在区间上是增函数,求ω的取值范围;(3)若函数g(x)=在的最大值为2,求实数a的值.参考答案:【考点】三角函数中的恒等变换应用;函数与方程的综合运用.【分析】(1)使用降次公式和诱导公式化简4sin2(+),使用平方差公式和二倍角公式化简(cosx+sinx)(cosx﹣sinx);(2)求出f(ωx)的包含0的增区间U,令[﹣,]?U,列出不等式组解出ω;(3)求出g(x)解析式,判断g(x)的最大值,列方程解出a.【解答】解:(1)f(x)=2[1﹣cos(+x)]?sinx+cos2x﹣sin2x﹣1=(2+2sinx)?sinx+1﹣2sin2x﹣1=2sinx.(2)∵f(ωx)=2sinωx,由≤ωx≤,解得﹣+≤x≤+,∴f(ωx)的递增区间为[﹣+,+],k∈Z.∵f(ωx)在[﹣,]上是增函数,∴当k=0时,有,∴,解得,∴ω的取值范围是(0,].(3)g(x)=sin2x+asinx﹣acosx﹣a﹣1,令sinx﹣cosx=t,则sin2x=1﹣t2,∴y=1﹣t2+at﹣a﹣1=﹣(t﹣)2+﹣,∵t=sinx﹣cosx=sin(x﹣),∵x∈[﹣,],∴x﹣∈[﹣,],∴.①当<﹣,即a<﹣2时,ymax=﹣(﹣)2+﹣=﹣a﹣﹣2.令﹣a﹣﹣2=2,解得a=﹣(舍).②当﹣≤≤1,即﹣2≤a≤2时,ymax=﹣,令,解得a=﹣2或a=4(舍).③当,即a>2时,在t=1处,由得a=6.因此,a=﹣2或a=6.20.已知定义域为R的函数f(x)=是奇函数.(1)求b的值;(2)判断并证明函数f(x)的单调性;(3)若对任意的t∈R,不等式f(t2﹣2t)+f(2t2﹣k)<0有解,求k的取值范围.参考答案:解:(1)∵f(x)为奇函数,∴f(0)=0,f(0)==0,解得b=1.经过验证满足条件.(2)由(1)可得:f(x)=,函数f(x)为增函数.证明:任取实数x1<x2,则f(x1)﹣f(x2)=﹣=,∵x1<x2,∴﹣x2<﹣x1,<,∴﹣<0,又>0,∴f(x1)﹣f(x2)<0,∴函数f(x)为增函数.(3)∵f(x)为奇函数,由不等式f(t2﹣2t)+f(2t2﹣k)<0化为f(t2﹣2t)<﹣f(2t2﹣k),即f(t2﹣2t)<f(k﹣2t2),又∵f(t)为增函数,t2﹣2t<k﹣2t2,∴3t2﹣2t<k.当t=﹣时,3t2﹣2t有最小值﹣,∴k.考点:函数奇偶性的判断;函数单调性的判断与证明.专题:方程思想;转化思想;数形结合法;函数的性质及应用.分析:(1)f(x)为奇函数,利用f(0)=0,解得b,并且验证即可得出..(2)由(1)可得:f(x)=,函数f(x)为增函数.任取实数x1<x2,只要证明f(x1)﹣f(x2)<0即可.(3)f(x)为奇函数,由不等式f(t2﹣2t)+f(2t2﹣k)<0化为f(t2﹣2t)<f(k﹣2t2),再利用单调性即可得出.解答:解:(1)∵f(x)为奇函数,∴f(0)=0,f(0)==0,解得b=1.经过验证满足条件.(2)由(1)可得:f(x)=,函数f(x)为增函数.证明:任取实数x1<x2,则f(x1)﹣f(x2)=﹣=,∵x1<x2,∴﹣x2<﹣x1,<,∴﹣<0,又>0,∴f(x1)﹣f(x2)<0,∴函数f(x)为增函数.(3)∵f(x)为奇函数,由不等式f(t2﹣2t)+f(2t2﹣k)<0化为f(t2﹣2t)<﹣f(2t2﹣k),即f(t2﹣2t)<f(k﹣2t2),又∵f(t)为增函数,t2﹣2t<k﹣2t2,∴3t2﹣2t<k.当t=﹣时,3t2﹣2t有最小值﹣,∴k.点评:本题考查了不等式的性质、函数的单调性与奇偶性、二次函数的性质,考查了推理能力与计算能力,属于中档题.21.(本小题12分)某租赁公司拥有汽
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环境影响评价公众参与机制在环境管理中的应用报告
- 2025年新能源微电网稳定性控制与优化运行在智能工厂中的应用报告
- 电脑代理销售合同范本
- 私人饭店厨房合同范本
- 湖北施工合同补充协议
- 矿山巷道掘进合同范本
- 租车合作框架合同范本
- 设备技术改造合同范本
- 软件系统实施合同范本
- 购买抖音账号合同范本
- 煤矿安全规程2025版解读
- 监狱公选面试题库及答案
- 尿培养的采集
- 具有法律效应的还款协议书6篇
- 东航空乘英语考试题目及答案
- 2025绿植租赁协议(简易版)
- T-AOPA0062-2024电动航空器电推进系统动力电机控制器技术规范
- 《三级工学一体化师资培训》课件-第四课:教学活动策划
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
- 2025年秋季开学典礼诗歌朗诵稿:纪念抗战胜利八十周年
- 2025年广东省中考英语试卷深度评析及2026年备考策略
评论
0/150
提交评论