




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省张家口市常宁中学2022年高一数学理下学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.设是两个不同的平面,是一条直线,以下命题正确的是A.若,则 B.若∥∥,则C.若∥,则 D.若∥,则参考答案:D2.某简单几何体的三视图如图所示,其正视图.侧视图.俯视图均为直角三角形,面积分别是1,2,4,则这个几何体的体积为 (
) A.
B.
C.4
D.8
参考答案:A略3.斜率为2的直线的倾斜角α所在的范围是()A.0°<α<45° B.45°<α<90° C.90°<α<135° D.135°<α<180°参考答案:B【考点】I2:直线的倾斜角.【分析】根据直线斜率和倾斜角之间的关系即可求解.【解答】解:∵直线l的斜率是2,∴设直线的倾斜角为θ,则tanθ=2,∵tan45°=1<2,而tanθ=2>0,故θ是锐角,故选:B.【点评】本题主要考查直线斜率和倾斜角的计算,比较基础.4.若全集且,则集合的真子集共有(
)A.个
B.
个
C.个
D.
个参考答案:A略5.设偶函数的部分图象如图所示,△KMN为等腰直角三角形,∠KMN=90°,则的值为A.
B
C
D参考答案:B由题图知函数的周期,由=2,得ω=π.由△KMN为等腰直角三角形,∠KMN=90°,知点M到x轴的距离是,则f(x)=cos(πx+φ),由f(x)是偶函数,所以π×0+φ=0,∴φ=0,f(x)=cosπx,故f=cos=.故选B.6.如果定义在上的奇函数f(x),在(0,+∞)内是减函数,又有f(3)=0,则的解集(
)A.{x|-3<x<0或x>3}
B.{x|x<-3或0<x<3}
C.{x|x<-3或x>3}
D.{x|-3<x<0或0<x<3}参考答案:C7.将函数的图象沿轴向右平移个单位长度后,所得到的函数为偶函数,则的最小值是(
)A.
B.
C.
D.参考答案:C8.正方体,ABCD﹣A1B1C1D1中,直线A1B与平面A1ACC1所成的角为()A.30° B.45° C.60° D.90°参考答案:A【考点】直线与平面所成的角.【专题】计算题.【分析】取BC的中点O,连接BO,OA1由正方体的性质可知BO⊥平面AA1C1C,从而可得∠BA1O即为直线与平面所成的角在Rt△BOA1中由可求【解答】解:取BC的中点O,连接BO,OA1由正方体的性质可得BO⊥AC,BO⊥AA1且AA1∩AC=A∴BO⊥平面AA1C1C∴∠BA1O即为直线与平面所成的角设正方体的棱长为a,则在Rt△BOA1中=∴∠BA1O=30°故选A.【点评】本题主要考查了直线与平面所成的角,其一般步骤是:①找(做)出已知平面的垂线②给出所要求解的线面角③在直角三角形中进行求解;解决本题的关键是要熟练掌握正方体的性质.9.不等式恒成立,则的取值范围为(
)A. B.C.
D.参考答案:D10.设集合A和B都是自然数集合N,映射:A→B把集合A中的元素n映射到集合B中的元素2n+n,则在映射下,象20的原象是 (
)
A.2 B.3 C.4
D.5参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11.已知△ABC的内角A、B、C的对边分别为a、b、c,若,则角A=______.参考答案:60°【分析】由,根据余弦定理可得结果.【详解】,由余弦定理得,,又,则,故答案为.【点睛】本题主要考查余弦定理及特殊角的三角函数,属于简单题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用.12.若函数f(x)=,则f(log23)=()A.3 B.4 C.16 D.24参考答案:D【考点】对数的运算性质;函数的周期性;函数的值.【分析】先根据对数函数的性质判断log23的范围,代入相应的解析式求解,再判断所得函数值的范围,再代入对应解析式求解,利用对数的恒等式“=N”进行求解.【解答】解:∵log23<4,∴f(log23)=f(log23+3),∵log23+3>4,∴f(log23+3)===24.故选D.13.在中,∠A:∠B=1:2,∠的平分线分⊿ACD与⊿BCD的面积比是3:2,则
参考答案:3/4略14.=__________参考答案:15.已知定义在R上的函数f(x)、g(x)满足:对任意x,y∈R有f(x﹣y)=f(x)g(y)﹣f(y)g(x)且f(1)≠0.若f(1)=f(2),则g(﹣1)+g(1)=
.参考答案:1【考点】抽象函数及其应用.【分析】利用已知条件判断函数的奇偶性,通过f(2)=f[1﹣(﹣1)]求出结果.【解答】解:令x=u﹣v,则f(﹣x)=f(v﹣u)=f(v)g(u)﹣g(v)f(u)=﹣[f(u)g(v)﹣g(u)f(v)]=﹣f(x)∴f(x)为奇函数.f(2)=f[1﹣(﹣1)]=f(1)g(﹣1)﹣g(1)f(﹣1)=f(1)g(﹣1)+g(1)f(1)=f(1)[g(﹣1)+g(1)].又∵f(2)=f(1)≠0,∴g(﹣1)+g(1)=1.故答案为:1.16.
已知集合,则用列举法表示集合=______________.参考答案:17.实数集中的元素应满足的条件是
.参考答案:且且三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知集合,.(1)存在,使得,求的取值范围;(2)若,求的取值范围.参考答案:(1);(2).19.设Sn为数列{an}的前n项和,.(1)求证:数列是等比数列;(2)求证:.参考答案:(1)见解析;(2)见解析.【分析】(1)令,由求出的值,再令,由得,将两式相减并整理得,计算出为非零常数可证明出数列为等比数列;(2)由(1)得出,可得出,利用放缩法得出,利用等比数列求和公式分别求出数列和前项和,从而可证明出所证不等式成立.【详解】(1)当时,,解得;当时,由得,上述两式相减得,整理得.则,且.所以,数列是首项为,公比为的等比数列;(2)由(1)可知,则.因为,所以.又因为,所以.综上,.【点睛】本题考查利用前项和求数列通项,考查等比数列的定义以及放缩法证明数列不等式,解题时要根据数列递推公式或通项公式的结构选择合适的方法进行求解,考查分析问题和解决问题的能力,属于中等题.20.已知向量,满足,,且(1)求;(2)在△ABC中,若,,求.参考答案:(1)(2)【分析】(1)将展开得到答案.(2),平方计算得到答案.【详解】解:(1)因为所以,,所以,,又夹角在上,∴;(2)因为,所以,,所以,边的长度为.【点睛】本题考查了向量的夹角,向量的加减计算,意在考查学生的计算能力.21.设a,b∈R,且a≠2,定义在区间(﹣b,b)内的函数f(x)=lg是奇函数.(1)求a的值;(2)求b的取值范围;(3)用定义讨论并证明函数f(x)的单调性.参考答案:【考点】函数恒成立问题;函数单调性的判断与证明;函数奇偶性的性质.【分析】(1)函数f(x)=lg是奇函数等价于:对任意的x∈(﹣b,b),都有f(﹣x)=﹣f(x),即(a2﹣4)x2=0对任意x∈(﹣b,b)恒成立,解得a的值;(2)解>0得:x∈(﹣,).则有(﹣,)?(﹣b,b),解得b的取值范围;(3)任取x1,x2∈(﹣b,b),令x1<x2,判断f(x1),f(x2)的大小,根据定义,可得答案.【解答】(本题满分12分)解:(1)函数f(x)=lg是奇函数等价于:对任意的x∈(﹣b,b),都有f(﹣x)=﹣f(x),即=,即(a2﹣4)x2=0对任意x∈(﹣b,b)恒成立,∴a2﹣4=0又a≠2,∴a=﹣2(2)由(1)得:>0对任意x∈(﹣b,b)恒成立,解>0得:x∈(﹣,).则有(﹣,)?(﹣b,b),解得:b∈(0,]](3)任取x1,x2∈(﹣b,b),令x1<x2,则x1,x2∈(﹣,),∴1﹣2x1>1﹣2x2>0,1+2x2>1+2x1>0,即(1+2x2)(1﹣2x1)>(1﹣2x2)(1+2x1)>0,即>1,f(x1)﹣f(x2)=﹣=>0,则f(x1)>f(x2)∴f(x)在(﹣b,b)内是单调减函数.22.某海域的东西方向上分别有A,B两个观测点(如图),它们相距海里.现有一艘轮船在D点发出求救信号,经探测得知D点位于A点北偏东45°,B点北偏西60°,这时,位于B点南偏西60°且与B点相距海里的C点有一救援船,其航行速度为30海里/小时.(1)求B点到D点的距离BD;(2)若命令C处的救援船立即前往D点营救,求该救援船到达D点需要的时间.参考答案:(1);(2)1【分析】(1)在△DAB中利用正弦定理,求出BD;(2)在△DCB中,利用余弦定理求出CD,根据速度求出时间.【详解】(1)由题意知AB=5(3+)海里,∠DBA=90°﹣60°=30°,∠DAB=90°﹣45°=45°,∴∠ADB=180°﹣(45°+30)°=105°,在△DAB中,由正弦定理得=,∴DB=====10(海里)(2)在△DBC中,∠DBC=∠DBA+∠ABC=30°+(90°﹣60°)=60°,…(10分)BC=20(海里),由余弦定理得CD2=BD2+BC2﹣2BD?BC?c
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民间募集资金合同范本
- 车辆调度合作合同范本
- 自媒体合同协议书模板
- 软件短期雇佣合同范本
- 门面赠与协议合同范本
- 运输合同范本主页模板
- 隧道钢架安装合同范本
- 软件技术销售合同范本
- 租车车位出租合同范本
- 饭店厨房转包合同范本
- 苏教版一年级数学上册月考测试卷(一)(范围:游戏分享至第一单元)(含答案)
- 2025至2030中国电镀工业园区行业发展趋势分析与未来投资战略咨询研究报告
- 机械厂设备使用维护细则
- 国企人力资源岗笔试模拟试题及参考答案
- 遵守规则课件-2025-2026学年统编版道德与法治八年级上册
- 2025-2026学年人教精通版四年级英语上册(全册)教学设计(附目录)
- 《横》书法教学课件
- 文件外发申请单
- 历史选择性必修1 国家制度与社会治理(思考点学思之窗问题探究)参考答案
- 中国医院质量安全管理 第2-29部分:患者服务临床营养 T∕CHAS 10-2-29-2020
- 人大附小诗词选修课:苏轼生平
评论
0/150
提交评论