




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
八年级数学教学计划七篇八年级数学教学计划第一篇
一、学习目标:1.经历探索平方差公式的过程.
2.会推导平方差公式,并能运用公式开展简单的运算.
二、重点难点
重点:平方差公式的推导和应用
难点:理解平方差公式的构造特征,灵活应用平方差公式.
三、合作学习
你能用简便方法计算以下各题吗?
(1)20xx×1999(2)998×1002
导入新课:计算以下多项式的积.
(1)(x+1)(x-1)(2)(m+2)(m-2)
(3)(2x+1)(2x-1)(4)(x+5y)(x-5y)
结论:两个数的和与这两个数的差的积,等于这两个数的平方差.
即:(a+b)(a-b)=a2-b2
四、精讲精练
例1:运用平方差公式计算:
(1)(3x+2)(3x-2)(2)(b+2a)(2a-b)(3)(-x+2y)(-x-2y)
例2:计算:
(1)102×98(2)(y+2)(y-2)-(y-1)(y+5)
随堂练习
计算:
(1)(a+b)(-b+a)(2)(-a-b)(a-b)(3)(3a+2b)(3a-2b)
(4)(a5-b2)(a5+b2)(5)(a+2b+2c)(a+2b-2c)(6)(a-b)(a+b)(a2+b2)
五、小结:(a+b)(a-b)=a2-b2
第三十五学时:4.2.2.完全平方公式(一)
一、学习目标:1.完全平方公式的推导及其应用.
2.完全平方公式的几何解释.
二、重点难点:
重点:完全平方公式的推导过程、构造特点、几何解释,灵活应用
难点:理解完全平方公式的构造特征并能灵活应用公式开展计算
三、合作学习
Ⅰ.提出问题,创设情境
一位老人非常喜欢孩子.每当有孩子到他家做客时,老人都要拿出糖果招待他们.来一个孩子,老人就给这个孩子一块糖,来两个孩子,老人就给每个孩子两块塘,…
(1)第一天有a个男孩去了老人家,老人一共给了这些孩子多少块糖?
(2)第二天有b个女孩去了老人家,老人一共给了这些孩子多少块糖?
(3)第三天这(a+b)个孩子一起去看老人,老人一共给了这些孩子多少块糖?
(4)这些孩子第三天得到的糖果数与前两天他们得到的糖果总数哪个多?多多少?为什么?
Ⅱ.导入新课
计算以下各式,你能发现什么规律?
(1)(p+1)2=(p+1)(p+1)=_______;(2)(m+2)2=_______;
(3)(p-1)2=(p-1)(p-1)=________;(4)(m-2)2=________;
(5)(a+b)2=________;(6)(a-b)2=________.
两数和(或差)的平方,等于它们的平方和,加(或减)这两个数的积的二倍的2倍.
(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
四、精讲精练
例1、应用完全平方公式计算:
(1)(4m+n)2(2)(y-)2(3)(-a-b)2(4)(b-a)2
例2、用完全平方公式计算:
(1)1022(2)992
随堂练习
第三十六学时:14.2.2完全平方公式(二)
一、学习目标:1.添括号法则.
2.利用添括号法则灵活应用完全平方公式
二、重点难点
重点:理解添括号法则,进一步熟悉乘法公式的合理利用
难点:在多项式与多项式的乘法中适当添括号到达应用公式的目的.
三、合作学习
Ⅰ.提出问题,创设情境
请同学们完成以下运算并回忆去括号法则.
(1)4+(5+2)(2)4-(5+2)(3)a+(b+c)(4)a-(b-c)
去括号法则:
去括号时,如果括号前是正号,去掉括号后,括号里的每一项都不变号;
如果括号前是负号,去掉括号后,括号里的各项都要变号。
1.在等号右边的括号内填上适当的项:
(1)a+b-c=a+(2)a-b+c=a-
(3)a-b-c=a-(4)a+b+c=a-
2.判断以下运算是否正确.
(1)2a-b-=2a-(b-)(2)m-3n+2a-b=m+(3n+2a-b)
(3)2x-3y+2=-(2x+3y-2)(4)a-2b-4c+5=(a-2b)-(4c+5)
添括号法则:添上一个正括号,扩到括号里的不变号,添上一个负括号,扩到括号里的要变号。
五、精讲精练
例:运用乘法公式计算
(1)(x+2y-3)(x-2y+3)(2)(a+b+c)2
(3)(x+3)2-x2(4)(x+5)2-(x-2)(x-3)
随堂练习:教科书练习
五、小结:去括号法则
六、作业:教科书习题
八年级数学教学计划第二篇
教学目标1.掌握用一组对边平行且相等来判定平行四边形的方法.
2.会综合运用平行四边形的四种判定方法和性质来证明问题.
教学重点:掌握用一组对边平行且相等来判定平行四边形的方法
教学难点:会综合运用平行四边形的四种判定方法和性质来证明问题
引
平行四边形的判定方法有那些?
取两根等长的木条AB、CD,将它们平行放置,再用两根木条BC、AD加固,得到的四边形ABCD是平行四边形吗?
二.探
自学内容:1、阅读教材P46页;2、完成自主学习;
[例题]
已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF
已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边三.结
师生共同小结平行四边形的判定方法
四.用
1、能判定一个四边形是平行四边形的条件是.
(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补
(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补
2、能判定四边形ABCD是平行四边形的题设是.
(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D
(C)AB=BC,AD=DC(D)AB∥CD,CD=AB
3、能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为.
(A)1∶2∶3∶4(B)1∶4∶2∶3
(C)1∶2∶2∶1(D)1∶2∶1∶2
4、如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有.
(A)2个(B)3个
(C)4个(D)5个
5、如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有.
(A)1条(B)2条
(C)3条(D)4条
五.作业P48练习1、2题
平行四边形的判定
平行四边形的判定1、2例题练习
平行四边形的判定3、4
***中学八年级数学导学案教案
编制人:审核人:日期:总课时数:第17课时
课题:平行四边形性质与判定练习课
教学目标1、训练掌握平行四边形的性质与判定.
2、能综合运用平行四边形的性质和判定解决平行四边形的有关计算问题,和简单的证明题
教学重点:训练掌握平行四边形的性质与判定
教学难点:综合运用平行四边形的性质和判定解决平行四边形的有关计算问题
引
师生一起回忆平行四边形的性质与判定
二.探
1、如图,平行四边形中,,,的垂直平分线交于,则的周长是()
A.6B.8
C.9D.10
2、在中,,点,,分别在,,上,四边形为平行四边形,,的周长是()
A.B.C.D.
三.结
平行四边形的性质及判定
四.用
[例题]
例1、已知:如图,在四边形中,与相交于点,,.
求证:四边形是平行四边形.
例2、如图,在平行四边形中,相交于点.以下结论中正确的个数有()
结论:①,②,③,
④.
A.1个B.2个
C.3个D.4个
[练习]
1、如图,在四边形中,,若,则.
2、如图,在中,,平分交边于点,则线段的长度分别为()
A.和B.和C.和D.和
3、如图,的周长是,的周长是,则的长为()
A.B.C.D.
4、如图,已知四边形纸片,现需将该纸片剪拼成一个与它面积相等的平行四边形纸片.如果限定裁剪线最多有两条,能否做到:(用“能”或“不能”填空).若填“能”,请确定裁剪线的位置,并说明拼接方法;若填“不能”,请简要说明理由.
答案:能
五.作业P49A组1到6题
板书设计
平行四边形的性质与判定
定理:平行四边形的性质与判定例题练习
***中学八年级数学导学案教案
编制人:周浩雄审核人:日期:总课时数:第18课时
课题:平行四边形性质与判定练习课
教学目标1、训练掌握平行四边形的性质与判定.
2、能综合运用平行四边形的性质和判定解决平行四边形的有关计算问题,和简单的证明题
教学重点:训练掌握平行四边形的性质与判定
教学难点:综合运用平行四边形的性质和判定解决平行四边形的有关计算问题
引
师生一起回忆平行四边形的性质与判定
二.探
1、如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则平行四边形ABCD的周长是.
2、如图,在中,与相交于点,点是边的中点,,则的长是.
3、如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=,则ΔCEF的周长为
A.8B.9.5
C.10D.11.5
4.如图,在□ABCD中,AC平分∠DAB,AB=3,则□ABCD的周长为
A.6B.9
C.12D.15
7.如图在ABCD中,AD=3cm,AB=2cm,则ABCD的周长等于()
A.10cmB.6cmC.5cmD.4cm
三.结
平行四边形的性质及判定
四.用
[例题]
例1、如图,已知平行四边形,是延长线上一点,连结交于点,在不添加任何辅助线的情况下,请补充一个条件,使,这个条件是.(只要填一个)
或或或F为DE的中点或F为BC的中点或或B为AE的中点
[练习]如图,请在以下四个关系中,选出两个恰当的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)
关系:①∥,②,③,④.
已知:在四边形中,,;
求证:四边形是平行四边形.
①③,①④,②④,③④均可,其余均不可以.
五.作业P50B组7到10题
板书设计
平行四边形的性质与判定
定理:平行四边形的性质与判定
八年级数学教学计划第三篇
[环节一]复习回忆,导入新课
1、在本上画一个任意三角形。
2、和同桌交流你前面学习了哪些三角形中的线段?三角形的角有怎样的性质?
设计意图:设计操作活动回忆旧知识,并将操作活动与学生的思维活动、语言表达有机结合,实现数学思考的内化,防止了传统的问答式回忆、参与人数少、顾及不到各层面学生、用时较多等问题。
[环节二]猜想发现
1、三角形内角和是多少度?
2、你能用实验的方法来验证你的猜想吗?
拼图实验,分两步完成。
第一步:我先示范图(1)的拼法,拼图,发现三角形内角和;
第二步:每个学生把课前准备好的三角形纸片的两个内角剪下,和第三个内角拼在一起。学生展示自己的拼法。
在拼角时,如果让学生剪下三角形的内角,学生很可能会把三角形的三个内角都剪下,把这个三角形分成四块,虽然三个角拼在一起构成了平角,但从这种拼法中寻找证明三角形内角和定理的方法有一定难度。于是,我采取了先示范图(1)的拼法(即剪下三角形两个内角的拼在第三个内角的两旁),然后让学生动手操作:剪下两个角,拼在第三个角的一旁。
在本环节中,我还有一点困惑:如果在图(1)把∠B拼在∠A的右边,把∠C拼在∠A的左边;或者在图(2)中把∠B拼在中间,能找到三角形内角和定理的证明方法吗?
[环节三]逻辑证明
从刚刚的操作过程中,你能发现证明的思路吗?
小组活动流程:
1.先思考;
2.组内交流你的证明思路;
3.选出小组代表发言。
设计意图:第一,通过作平行线“搬两个角”,运用平行线的性质和平角的定义证明。启发学生过△ABC的顶点A作直线∥BC,指导学生写出已知、求证、证明过程,规范证明格式;第二,在证明三角形内角和定理时,可以“搬两个角”来说理。如果只“搬一个角”行吗?
八年级数学教学计划第四篇
为贯彻落实新的课程标准,顺利完成本学期的数学教学任务,拟订本学期的授课计划如下:
一、目的要求
贯彻落实新的课程标准,坚持“为了每一位学生的发展”的核心理念,把握“让课堂充满生命活力,让学生成为学习主人”的主题策略,努力调动全体学生的数学学习积极性,全面提高课堂教学的质量,促进学生的可持续发展。
二、学生情况
本班有学生58人,其中男生35人,女生23人。来自本镇十多个村、居,多数是独生子女,经济状况不平衡,数学根底亦不平衡。部分同学数学根底不够扎实,学习上有畏难情绪,对这部分同学要给予足够的重视,帮助他们,力争全班同学共同提高。
三、教材情况
本教材在我校首次采用,是与新的课程标准相配套的教材。它遵循《课程标准》的理念,以“生活数学”、“活动思考”为主线展开课程内容,注重表达生活与数学的联系,为学生提供看得到、听得见、感受得到的基本素材;注重创设问题情境,引导学生在活动中思考、探索,主动获取数学知识,促进学生学习方式的转变,力求实现课程总体目标。它注重引导学生“做”数学,通过设置数学实验室、课题学习、数学活动等栏目,为学生提供了较多的“做”数学的时机,引导学生通过“做”感受数学、激发学生学习的积极性、探索知识和结论、应用所学知识解决简单问题
第七章一元一次不等式
具体要求:根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质;会解简单的一元一次不等式,并能在数轴上表示出解集;会解由两个一元一次不等式组成的不等式组并会用数轴确定解集;根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。
第八章分式
具体要求:知道分式并会利用它的基本性质开展约分和通分,开展简单的加、减、乘、除运算;会解可化为一元一次方程的分式方程;能够根据具体问题中的数量关系,列出可化为一元一次方程的分式方程,并能根据具体问题的实际意义,检验结果是否合理。
第九章反比例函数
具体要求:能结合具体情境体会反比例函数的意义,根据已知条件确定反比例函数表达式;能画出反比例函数的图象,根据图象和关系式y﹦k/x(k为常数,k≠0)探索并理解其性质(k﹤0或k﹥0时,图象的变化);能用反比例函数解决某些实际问题。
第十章图形的相似
具体要求:了解比例的基本性质及线段的比、成比例线段,通过建筑、艺术上的实例了解黄金分割;通过具体实例认识图形的相似,探索相似图形的性质,知道相似多边形的对应边成比例、面积的比等于对应边的比的平方;了解图形的位似,能够利用位似的原理将一个图形放大或缩小;通过典型实例观察和认识现实生活中的物体的相似,利用图形的相似解决一些实际问题;通过实例了解中心投影和平行投影;了解视点、视角及盲区的涵义,并能在简单的平面图和立体图中表示。
第十一章图形的证明(一)
具体要求:理解证明的必要性,会区分命题的条件和结论,能掌握用综合法证明的格式,体会证明的过程要步步有据;能利用知道的基本事实证明一些命题;能感受几何的演绎体系对数学发展和人类文明的价值。
第十二章认识概率
具体要求:能在具体情境中了解概率的意义,运用列举法计算简单随机事件发生的概率,注意在学习中培养和发展随机观念,初步形成用随机观念观察和问题的意识。
四、具体奋斗目标
认知目标:全面完成认知任务,熟悉了解各主要知识点并能应用于解决简单的实际问题,主要检测认知点合格率95﹪以上,优秀率50﹪以上。
八年级数学教学计划第五篇
数学一定要提前做大预习:
对于数学来说,即将成为初二的同学,初二这一年是关键年。
初二数学所学的部分,占整个初中阶段知识点的一半。这是一个很惊人的分量。中考几何的重头戏:三角形全等和它的三大转换,都要在初二全部讲完。这一部分学习的难度,大家可以问问学校里的学哥学姐。即使是在初一学习不错的,对三角形全等这一块的中高等题还是感到很麻手。除此之外,还有平行四边形和梯形的参加。
初二的代数主要分两部分来讲:式和函数。
初一的学习主要集中在代“数”上,对学生整体思想的要求不够。到了初二,分式、根式、、乘法公式、整式乘除、因式分解,全部是式子间的运算。这对学生的思维要求立马上了一个台阶。学生学起来,需要一个适应过程。对于学生来说,要么提前培养;要么在初二学习上挤出这部分适应的时间。
另外,函数这一部分要求学生对变化的数有整体趋势的把握。也是一种新的思维要求。
初二这一年,之所以说对数学很关键,不单单因为数学任务变多变难,还有一个原因是:一门新的理科类学科要和数学抢时间。那就是“物理”。
八年级数学教学计划第六篇
教学难点:绝对值。
教学过程:
一、复习:
1、实数分类:方法(1),
方法(2)
注:有限小数、无限循环小数是有理数,可化为分数;无限不循环小数是无理数
例1判断:
(1)两有理数的和、差、积、商是有理数;
(2)有理数与无理数的积是无理数;
(3)有理数与无理数的和、差是无理数;
(4)小数都是有理数;
(5)零是整数,是有理数,是实数,是自然数;(6)任何数的平方是正数;(7)实数与数轴上的点一一对应;(8)两无理数的和是无理数。例2以下各数中:
-1,0,,,1.101001,,,-,,2,.有理数集合{…};正数集合{…};整数集合{…};自然数集合{…};分数集合{…};无理数集合{…};绝对值最小的数的集合{…};
2、绝对值:=(1)有条件化简例
3、①当1②a,b,c为三角形三边,化简③如图,化简+。(2)无条件化简;
例
4、化简
解:步骤①找零点;②分段;③讨论。
例
5、①已知实数abc在数轴上的位置如图,化简|a+b|-|c-b|的结果为
②当-3
例
6、阅读下面材料并完成填空
你能比较两个数20xx20xx和20xx20xx的大小吗?为了解决这个问题先把问题一般化,既比较nn+1和(n+1)n的大小(的整数),然后从=1,=2,=3,。。。。这些简单的情况入手,从中发现规律,经过规纳,猜想出结论。
(1)通过计算,比较以下①——⑦各组中两个数的大小(在横线上填“>、=、<”号”)
①1221;②2332;③3443;④4554;⑤5665;⑥6776
⑦7887
(2)对第(1)小题的结果开展归纳,猜想出nn+1和(n+1)n的大小关系是
(3)根据上面的归纳结果猜想得到的一般结论是:20xx20xx20xx20xx
练习:(1)若a<-6,化简;(2)若a<0,化简
(3)若;(4)若=;
(5)解方程;(6)化简:。
二、小结:
;
三、作业:
四、教后感:
八年级数学教学计划第七篇
多阅读和积累,可以使学生增长知识,使学生在学习中做到举一反三。在此为您提供八年级上册数学勾股定理教学计划,希望给您学习带来帮助,使您学习更上一层楼!
一、内容和内容解析
本节课为人教版八年级数学下册第十八章第一节,教材64页至66页(不含探究1)的内容。其内容包括章前对勾股定理整章的引入:20xx年召开的国际数学家大会的会徽及“赵爽弦图”的简介,反映了我国古代对勾股定理的研究成果,是对学生开展爱国主义教育的良好素材。教材正文中从毕达哥拉斯发现等腰直角三角形的边之间的数量关系这一事实引入对勾股定理的探究,用面积法得到勾股定理的结论,而后教材又重点从“赵爽弦图”的方法对勾股定理开展了详细的论证;课后习题18.1的第1、2、7、11、12等题目针对勾股定理的内容适当的加以牢固,特别是第11、12题侧重对面积法运用的牢固。
勾股定理是几何中几个重要定理之一,揭露了直角三角形三边之间的数量关系,是对直角三角形性质的进一步学习和深入,它可以解决许多直角三角形中的计算问题,在实际生活中用途很大。它不仅在数学领域而且在其他自然科学领域中也被广泛地应用,而说明数学是一门根底学科,是人们生活的基本工具。
学生承受勾股定理的内容“在直角三角形中两直角边的平方和等于斜边的平方”这一事实从学习的角度不难,包括对它的应用也不成问题。但对勾股定理的论证,教材中介绍的面积证法即:依据图形经过割补拼接后,只要没有重叠,没有空隙,面积就不会改变。学生承受起来有障碍(是第一次接触面积法),因此从面积的“分割”“补全”两种方法开展演示同时学生动手亲自拼接图形构成“赵爽弦图”并亲自验证三个正方形之间的面积关系得到勾股定理的证明。有利的让学生经历了“感知、猜想、验证、概括、证明”的认知过程,感触知识的产生、发展、形成以提高学生学习习惯和能力。
本节的后续学习中,对勾股定理运用的探究和勾股定理逆命题的论证和应用,都是将图形与数量严密的结合,将有利的培养学生数形结合的意识以提高学生问题、解决问题的能力。同时也为后期学习四边形、圆中的有关计算及计算物体面积奠定根底,因此本节课无论从知识的角度还是从数学技能、数学思想方法及数学活动经验等层面都起着举足轻重的作用。为此,教学重点:勾股定理的内容教学难点:勾股定理的论证
二、教学目标及目标解析
1、教学目标
①、了解勾股定理的文化背景,体验勾股定理的探索过程,掌握勾股定理的内容。
②、在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想。
③通过观察课件探究拼图等活动,体验数学思维的严谨性,发展形象思维,体验解决问题方法的多样性,并学会与人合作、与人交流,培养学生的合作交流意识和探索精神。
④、在对勾股定理历史的了解过程中,感受数学文化,增强爱国情操,激发学习热情,养成关爱生活、观察生活、思考生活的习惯。
2、目标解析
①、通过学生了解“赵爽弦图”、了解“毕达哥拉斯”探究勾股定理的过程而猜想、验证勾股定理,自愿承受这一理论事实并能简单运用。
②、通过面积法探究勾股定理,让学生感触到直角三角形这一图形与a2+b2=c2数量关系建立对应关系,同时不同图形从面积角度的论证得到面积的割补是形的变化而面积这一数量不变。更深层次的建立数形结合的方法。
③、通过观察、探究的活动让学生感触知识的产生过程,学生从中学会合作交流,协作探究、归纳总结的学习方法,提高学生的探索能力。
④、勾股定理知识是我国数学领域的璀璨明珠,代表着历代智慧和探索精神的结晶。通过学生亲身再次重温它的得来的过程从中感触我国数学知识源远流长和数学价值的伟大从中得到良好的思想的熏陶。
三、教学问题诊断
学生对勾股定理的形式容易承受甚至利用结论开展有关的计算难度也不大,但究其缘由有难度,这正是数学学习活动中学生要具备的基本的学习品质和学习技能。所以,在学习勾股定理由来的教学时,应有针对性地设计图形形式的多样呈现,让学生亲自动手拼接图形来揭露概念的由来及正确性。
对于图形面积的计算学生有基本的技能,但如何最合理的开展分割或补全一时是不易理解,这属于思想方法层面的问题,学生往往只停留在能听懂,但不能内化的层面,需要我开展精心的设计,充分展示“分割、补全、拼凑”以发挥教师的引导作用,为学生探究一般的直角三角形的三边关系做好铺垫,为数学多渠道多方法的探究证明做好引导。
四、教学支持条件
根据本节课的教材内容特点,为了更直观、形象地突出重点,突破难点,提高课堂效率,采用以观察发现、动手操练、演算探究为主,多媒体演示为辅的教学组织方式.在教学过程中,给学生提供充足的活动时间和空间,以我设计探究实验和带有启发性及思考性的问题串,创设问题情景,启发学生思维,学生亲自动手操作、测量、演算,让学生亲身体验知识的产生、发展和形成的过程.
五、教学过程设计
(一)创设情境,导入新课。
问题1:请同学们欣赏20xx年国际数学家大会会场情景的的图片,重点抽取会徽图案,你能发现它是有什么图形构成的?(材料附后)
教师展示ppt课件,介绍数学家大会及会徽“赵爽弦图”,学生观察、发表意见、聆听介绍。
[设计意图]以国际数学家大会“赵爽弦图”为背景导入新课,提出问题,首先可以激发学生强烈的好奇心和求知欲,感受我国古代数学知识的伟大,开展爱国教育,增强学好数学的信心;其次让学生在观察、思考、交流的过程中,对勾股定理先有初步的感性认识.
方案1:如果学生能够说出勾股定理的相关知识,则直接
进入下一环节的学习。
方案2:如果学生有困难,则安排学生自学教材,再发表意见。
学生发言,教师倾听。视学生答复的重点板书:勾三股四弦五等
[设计意图]教师获得学生的知识储备以便以后的教学定位。再次让学生感触勾股定理的存在、作用即勾股定理是研究直角三角形边之间的关系的定理,明确学习目标。
(二)观察演算,合作探究,初具概念
问题3:介绍毕达哥拉斯发现勾股定理的故事。利用ppt课件展示毕达哥拉斯的发现和他的探究的过程。提问:这三个正方形之间的面积有什么关系?从中可以转化得到等腰直角三角形三边在数量上有什么关系?(故事附后)
教师口述故事,ppt课件同步演示;学生借助直观的课件,学生个体或学生间观察交流探究得到结论。
[设计意图]首先,故事中代出问题既激发学生的兴趣又降低了学生探究的难度,让每个学生都可做,可得;其次得到三个正方形面积间的关系而得到等腰直角三角形三边之间的关系,由特殊的图形为研究定理的一般性做好铺垫;再者学生初步具有了勾股定理的雏形,即在等腰直角三角形中两直角边的平方和等于斜边的平方。
问题4:毕达哥拉斯想到:这一结论是不是所有的直角三角形都具备呢?于是展开了进一步的探索。
教师利用ppt课件展示,提出问题;学生利用《学习案》中第1题自己进一步探究,交流;猜测验证。(学习案附后)
[设计意图]问题更深一层次,调动学生高涨的探究热情,同时有效的渗透了由特殊到一般的数学思想。
问题5:你是怎样演算的?
教师关注学生之间的交流,关注学生借助面积法探究问题的不同解法,选取代表性的方法演示。学生个体或小组探究、交流。
视学生的学习情况确定下步的教学:
方案1:学生能够用面积分割法如图一或用面积补全法如图二的方法验证了结论,则直接
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乐理考试题听力及答案
- 2025年中国沙发绳数据监测研究报告
- 口腔影像考试题及答案
- 课件时间进度
- 开平话考试题及答案
- 2025年教师招聘之《小学教师招聘》通关练习试题及答案详解(名校卷)
- 军事投弹考试题及答案
- 菊花台考试题及答案
- 静脉知识考试题及答案
- 汽车冲压生产线操作工理念考核试卷及答案
- 2025年大学辅导员招聘考试题库
- 2025-2026学年七年级英语上学期第一次月考(Unit 1-2)(广州专用沪教版2024)解析卷
- 浙江名校协作体(G12)2025年9月2026届高三返校联考物理(含答案)
- 2025年山东省青岛市中考英语试卷真题(含答案详解)
- 廉租房承包物业合同范本
- 文学社教学课件
- 2025全国企业员工全面质量管理知识竞赛试题及答案
- 中小学心理健康c证考试试题及答案
- 污水厂工艺知识培训课件
- 2025年中学教师资格证考试(科目二)教育知识与能力冲刺试卷
- 水利水电工程单元工程施工质量验收标准第8部分:安全监测工程
评论
0/150
提交评论