




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知定义在上函数的图象关于原点对称,且,若,则()A.0 B.1 C.673 D.6742.如图所示,网络纸上小正方形的边长为1,粗线画出的是某四棱锥的三视图,则该几何体的体积为()A.2 B. C.6 D.83.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是()A.月收入的极差为60 B.7月份的利润最大C.这12个月利润的中位数与众数均为30 D.这一年的总利润超过400万元4.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种5.已知集合,则全集则下列结论正确的是()A. B. C. D.6.若函数有两个极值点,则实数的取值范围是()A. B. C. D.7.下列函数中,既是奇函数,又在上是增函数的是().A. B.C. D.8.已知双曲线的一个焦点为,点是的一条渐近线上关于原点对称的两点,以为直径的圆过且交的左支于两点,若,的面积为8,则的渐近线方程为()A. B.C. D.9.已知复数z满足(i为虚数单位),则在复平面内复数z对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.向量,,且,则()A. B. C. D.11.已知函数,,若成立,则的最小值为()A.0 B.4 C. D.12.已知复数满足,则的最大值为()A. B. C. D.6二、填空题:本题共4小题,每小题5分,共20分。13.(5分)如图是一个算法的流程图,若输出的值是,则输入的值为____________.14.已知函数,若在定义域内恒有,则实数的取值范围是__________.15.记等差数列和的前项和分别为和,若,则______.16.已知为等比数列,是它的前项和.若,且与的等差中项为,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,点是以为直径的圆上异于、的一点,直角梯形所在平面与圆所在平面垂直,且,.(1)证明:平面;(2)求点到平面的距离.18.(12分)设数列是公差不为零的等差数列,其前项和为,,若,,成等比数列.(1)求及;(2)设,设数列的前项和,证明:.19.(12分)自湖北武汉爆发新型冠状病毒惑染的肺炎疫情以来,武汉医护人员和医疗、生活物资严重缺乏,全国各地纷纷驰援.截至1月30日12时,湖北省累计接收捐赠物资615.43万件,包括医用防护服2.6万套N95口軍47.9万个,医用一次性口罩172.87万个,护目镜3.93万个等.中某运输队接到给武汉运送物资的任务,该运输队有8辆载重为6t的A型卡车,6辆载重为10t的B型卡车,10名驾驶员,要求此运输队每天至少运送720t物资.已知每辆卡车每天往返的次数:A型卡车16次,B型卡车12次;每辆卡车每天往返的成本:A型卡车240元,B型卡车378元.求每天派出A型卡车与B型卡车各多少辆,运输队所花的成本最低?20.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.21.(12分)已知函数的图象向左平移后与函数图象重合.(1)求和的值;(2)若函数,求的单调递增区间及图象的对称轴方程.22.(10分)记函数的最小值为.(1)求的值;(2)若正数,,满足,证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.B【解析】
由题知为奇函数,且可得函数的周期为3,分别求出知函数在一个周期内的和是0,利用函数周期性对所求式子进行化简可得.【详解】因为为奇函数,故;因为,故,可知函数的周期为3;在中,令,故,故函数在一个周期内的函数值和为0,故.故选:B.【点睛】本题考查函数奇偶性与周期性综合问题.其解题思路:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.2.A【解析】
先由三视图确定该四棱锥的底面形状,以及四棱锥的高,再由体积公式即可求出结果.【详解】由三视图可知,该四棱锥为斜着放置的四棱锥,四棱锥的底面为直角梯形,上底为1,下底为2,高为2,四棱锥的高为2,所以该四棱锥的体积为.故选A【点睛】本题主要考查几何的三视图,由几何体的三视图先还原几何体,再由体积公式即可求解,属于常考题型.3.D【解析】
直接根据折线图依次判断每个选项得到答案.【详解】由图可知月收入的极差为,故选项A正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B正确;易求得总利润为380万元,众数为30,中位数为30,故选项C正确,选项D错误.故选:.【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.4.B【解析】
根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有C3若甲村有2外科,1名护士,则有C3则总共的分配方案为2×(9+9)=2×18=36种,故选:B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.5.D【解析】
化简集合,根据对数函数的性质,化简集合,按照集合交集、并集、补集定义,逐项判断,即可求出结论.【详解】由,则,故,由知,,因此,,,,故选:D【点睛】本题考查集合运算以及集合间的关系,求解不等式是解题的关键,属于基础题.6.A【解析】试题分析:由题意得有两个不相等的实数根,所以必有解,则,且,∴.考点:利用导数研究函数极值点【方法点睛】函数极值问题的常见类型及解题策略(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号.(2)已知函数求极值.求f′(x)―→求方程f′(x)=0的根―→列表检验f′(x)在f′(x)=0的根的附近两侧的符号―→下结论.(3)已知极值求参数.若函数f(x)在点(x0,y0)处取得极值,则f′(x0)=0,且在该点左、右两侧的导数值符号相反.7.B【解析】
奇函数满足定义域关于原点对称且,在上即可.【详解】A:因为定义域为,所以不可能时奇函数,错误;B:定义域关于原点对称,且满足奇函数,又,所以在上,正确;C:定义域关于原点对称,且满足奇函数,,在上,因为,所以在上不是增函数,错误;D:定义域关于原点对称,且,满足奇函数,在上很明显存在变号零点,所以在上不是增函数,错误;故选:B【点睛】此题考查判断函数奇偶性和单调性,注意奇偶性的前提定义域关于原点对称,属于简单题目.8.B【解析】
由双曲线的对称性可得即,又,从而可得的渐近线方程.【详解】设双曲线的另一个焦点为,由双曲线的对称性,四边形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的渐近线方程为.故选B【点睛】本题考查双曲线的简单几何性质,考查直线与圆的位置关系,考查数形结合思想与计算能力,属于中档题.9.D【解析】
根据复数运算,求得,再求其对应点即可判断.【详解】,故其对应点的坐标为.其位于第四象限.故选:D.【点睛】本题考查复数的运算,以及复数对应点的坐标,属综合基础题.10.D【解析】
根据向量平行的坐标运算以及诱导公式,即可得出答案.【详解】故选:D【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.11.A【解析】
令,进而求得,再转化为函数的最值问题即可求解.【详解】∵∴(),∴,令:,,在上增,且,所以在上减,在上增,所以,所以的最小值为0.故选:A【点睛】本题主要考查了导数在研究函数最值中的应用,考查了转化的数学思想,恰当的用一个未知数来表示和是本题的关键,属于中档题.12.B【解析】
设,,利用复数几何意义计算.【详解】设,由已知,,所以点在单位圆上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.二、填空题:本题共4小题,每小题5分,共20分。13.或【解析】
依题意,当时,由,即,解得;当时,由,解得或(舍去).综上,得或.14.【解析】
根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.15.【解析】
结合等差数列的前项和公式,可得,求解即可.【详解】由题意,,,因为,所以.故答案为:.【点睛】本题考查了等差数列的前项和公式及等差中项的应用,考查了学生的计算求解能力,属于基础题.16.【解析】
设等比数列的公比为,根据题意求出和的值,进而可求得和的值,利用等比数列求和公式可求得的值.【详解】由等比数列的性质可得,,由于与的等差中项为,则,则,,,,,因此,.故答案为:.【点睛】本题考查等比数列求和,解答的关键就是等比数列的公比,考查计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析;(2)【解析】
(1)取的中点,证明,则平面平面,则可证平面.(2)利用,是平面的高,容易求.,再求,则点到平面的距离可求.【详解】解:(1)如图:取的中点,连接、.在中,是的中点,是的中点,平面平面,故平面在直角梯形中,,且,∴四边形是平行四边形,,同理平面又,故平面平面,又平面平面.(2)是圆的直径,点是圆上异于、的一点,又∵平面平面,平面平面平面,可得是三棱锥的高线.在直角梯形中,.设到平面的距离为,则,即由已知得,由余弦定理易知:,则解得,即点到平面的距离为故答案为:.【点睛】考查线面平行的判定和利用等体积法求距离的方法,是中档题.18.(1),;(2)证明见解析.【解析】
(1)根据题中条件求出等差数列的首项和公差,然后根据首项和公差即可求出数列的通项和前项和;(2)根据裂项求和求出,根据的表达式即可证明.【详解】(1)设的公差为,由题意有,且,所以,;(2)因为,所以,.【点睛】本题主要考查了等差数列基本量的求解,裂项求和法,属于基础题.19.每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低【解析】
设每天派出A型卡车辆,则派出B型卡车辆,由题意列出约束条件,作出可行域,求出使目标函数取最小值的整数解,即可得解.【详解】设每天派出A型卡车辆,则派出B型卡车辆,运输队所花成本为元,由题意可知,,整理得,目标函数,如图所示,为不等式组表示的可行域,由图可知,当直线经过点时,最小,解方程组,解得,,然而,故点不是最优解.因此在可行域的整点中,点使得取最小值,即,故每天派出A型卡车辆,派出B型卡车辆,运输队所花成本最低.【点睛】本题考查了线性规划问题中的最优整数解问题,考查了数形结合的思想,解题关键在于列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数,同时注意整点的选取,属于中档题.20.(1)单调递增区间为,单调递减区间为(2)的取值范围是;对应的的值为.【解析】
(1)当时,求的导数可得函数的单调区间;(2)若函数有两个极值点,,且,利用导函数,可得的范围,再表达,构造新函数可求的取值范围,从而可求取到最小值时所对应的的值.【详解】(1)函数由条件得函数的定义域:,当时,,所以:,时,,当时,,当,时,,则函数的单调增区间为:,单调递减区间为:,;(2)由条件得:,,由条件得有两根:,,满足,△,可得:或;由,可得:.,函数的对称轴为,,所以:,;,可得:,,,则:,所以:;所以:,令,,,则,因为:时,,所以:在,上是单调递减,在,上单调递增,因为:,(1),,(1),所以,;即的取值范围是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高温管道隔热套管系统企业制定与实施新质生产力项目商业计划书
- 2025年智慧港口自动化装卸设备市场趋势与案例分析报告
- 2025年金融市场量化投资策略在股票市场的风险分散与收益优化研究报告
- 2025版量子计算技术研究与转让合同
- 【8历期末】安徽省马鞍山市和县2023-2024学年八年级下学期6月期末历史试题(含解析)
- DB62T 4113.3-2020 呼吸道传染病流行期间卫生防护规范 第3 部分:疾病防控人员
- 广东省初中生物联赛模拟试卷及答案(八下)
- 2021-2022学年山东省临沂市蒙阴县八年级(上)期末生物试卷(附答案详解)
- 青少年心理健康与教育
- 非营利组织员工晋升流程探讨
- 大学生宿舍设计调研报告
- 2025年中国列车无线调度通信系统数据监测研究报告
- 【MOOC答案】《C++程序设计实践》(北京科技大学)章节作业慕课答案
- 煤矿“一通三防”安全管理措施的有效性分析
- 外贸英语电子课件
- 2025湖北省武汉市中考语文模拟检测试卷(一模)(含答案)
- 《中国老年高血压管理指南(2023版)》解读
- 七年级下册《山地回忆》课件
- 浦东文员面试题及答案
- 腰椎病的康复护理
- 2024-2025学年度第二学期人教版八年级下册物理暑假作业含答案第一天
评论
0/150
提交评论