




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2021-2022高考数学模拟试卷请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,若曲线上始终存在两点,,使得,且的中点在轴上,则正实数的取值范围为()A. B. C. D.2.如图所示,三国时代数学家在《周脾算经》中利用弦图,给出了勾股定理的绝妙证明.图中包含四个全等的直角三角形及一个小正方形(阴影),设直角三角形有一个内角为,若向弦图内随机抛掷200颗米粒(大小忽略不计,取),则落在小正方形(阴影)内的米粒数大约为()A.20 B.27 C.54 D.643.已知,是两条不重合的直线,,是两个不重合的平面,则下列命题中错误的是()A.若,,则或B.若,,,则C.若,,,则D.若,,则4.已知中,,则()A.1 B. C. D.5.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.6.函数的图像大致为()A. B.C. D.7.若非零实数、满足,则下列式子一定正确的是()A. B.C. D.8.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.9.已知为虚数单位,实数满足,则()A.1 B. C. D.10.已知向量与的夹角为,,,则()A. B.0 C.0或 D.11.各项都是正数的等比数列的公比,且成等差数列,则的值为()A. B.C. D.或12.已知平面向量,满足且,若对每一个确定的向量,记的最小值为,则当变化时,的最大值为()A. B. C. D.1二、填空题:本题共4小题,每小题5分,共20分。13.展开式中项的系数是__________14.已知,记,则的展开式中各项系数和为__________.15.如图,在平面四边形ABCD中,|AC|=3,|BD|=4,则(AB16.某商场一年中各月份的收入、支出情况的统计如图所示,下列说法中正确的是______.①2至3月份的收入的变化率与11至12月份的收入的变化率相同;②支出最高值与支出最低值的比是6:1;③第三季度平均收入为50万元;④利润最高的月份是2月份.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在世界读书日期间,某地区调查组对居民阅读情况进行了调查,获得了一个容量为200的样本,其中城镇居民140人,农村居民60人.在这些居民中,经常阅读的城镇居民有100人,农村居民有30人.(1)填写下面列联表,并判断能否有99%的把握认为经常阅读与居民居住地有关?城镇居民农村居民合计经常阅读10030不经常阅读合计200(2)从该地区城镇居民中,随机抽取5位居民参加一次阅读交流活动,记这5位居民中经常阅读的人数为,若用样本的频率作为概率,求随机变量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)已知函数,记不等式的解集为.(1)求;(2)设,证明:.19.(12分)选修4-5:不等式选讲设函数f(x)=|x-a|,a<0.(1)证明:f(x)+f(-1(2)若不等式f(x)+f(2x)<12的解集非空,求20.(12分)如图所示,四棱锥P﹣ABCD中,PC⊥底面ABCD,PC=CD=2,E为AB的中点,底面四边形ABCD满足∠ADC=∠DCB=90°,AD=1,BC=1.(Ⅰ)求证:平面PDE⊥平面PAC;(Ⅱ)求直线PC与平面PDE所成角的正弦值;(Ⅲ)求二面角D﹣PE﹣B的余弦值.21.(12分)某地为改善旅游环境进行景点改造.如图,将两条平行观光道l1和l2通过一段抛物线形状的栈道AB连通(道路不计宽度),l1和l2所在直线的距离为0.5(百米),对岸堤岸线l3平行于观光道且与l2相距1.5(百米)(其中A为抛物线的顶点,抛物线的对称轴垂直于l3,且交l3于M
),在堤岸线l3上的E,F两处建造建筑物,其中E,F到M的距离为1
(百米),且F恰在B的正对岸(即BF⊥l3).(1)在图②中建立适当的平面直角坐标系,并求栈道AB的方程;(2)游客(视为点P)在栈道AB的何处时,观测EF的视角(∠EPF)最大?请在(1)的坐标系中,写出观测点P的坐标.22.(10分)某企业质量检验员为了检测生产线上零件的质量情况,从生产线上随机抽取了个零件进行测量,根据所测量的零件尺寸(单位:mm),得到如下的频率分布直方图:(1)根据频率分布直方图,求这个零件尺寸的中位数(结果精确到);(2)若从这个零件中尺寸位于之外的零件中随机抽取个,设表示尺寸在上的零件个数,求的分布列及数学期望;(3)已知尺寸在上的零件为一等品,否则为二等品,将这个零件尺寸的样本频率视为概率.现对生产线上生产的零件进行成箱包装出售,每箱个.企业在交付买家之前需要决策是否对每箱的所有零件进行检验,已知每个零件的检验费用为元.若检验,则将检验出的二等品更换为一等品;若不检验,如果有二等品进入买家手中,企业要向买家对每个二等品支付元的赔偿费用.现对一箱零件随机抽检了个,结果有个二等品,以整箱检验费用与赔偿费用之和的期望值作为决策依据,该企业是否对该箱余下的所有零件进行检验?请说明理由.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.D【解析】
根据中点在轴上,设出两点的坐标,,().对分成三类,利用则,列方程,化简后求得,利用导数求得的值域,由此求得的取值范围.【详解】根据条件可知,两点的横坐标互为相反数,不妨设,,(),若,则,由,所以,即,方程无解;若,显然不满足;若,则,由,即,即,因为,所以函数在上递减,在上递增,故在处取得极小值也即是最小值,所以函数在上的值域为,故.故选D.【点睛】本小题主要考查平面平面向量数量积为零的坐标表示,考查化归与转化的数学思想方法,考查利用导数研究函数的最小值,考查分析与运算能力,属于较难的题目.2.B【解析】
设大正方体的边长为,从而求得小正方体的边长为,设落在小正方形内的米粒数大约为,利用概率模拟列方程即可求解。【详解】设大正方体的边长为,则小正方体的边长为,设落在小正方形内的米粒数大约为,则,解得:故选:B【点睛】本题主要考查了概率模拟的应用,考查计算能力,属于基础题。3.D【解析】
根据线面平行和面面平行的性质,可判定A;由线面平行的判定定理,可判断B;C中可判断,所成的二面角为;D中有可能,即得解.【详解】选项A:若,,根据线面平行和面面平行的性质,有或,故A正确;选项B:若,,,由线面平行的判定定理,有,故B正确;选项C:若,,,故,所成的二面角为,则,故C正确;选项D,若,,有可能,故D不正确.故选:D【点睛】本题考查了空间中的平行垂直关系判断,考查了学生逻辑推理,空间想象能力,属于中档题.4.C【解析】
以为基底,将用基底表示,根据向量数量积的运算律,即可求解.【详解】,,.故选:C.【点睛】本题考查向量的线性运算以及向量的基本定理,考查向量数量积运算,属于中档题.5.D【解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.6.A【解析】
根据排除,,利用极限思想进行排除即可.【详解】解:函数的定义域为,恒成立,排除,,当时,,当,,排除,故选:.【点睛】本题主要考查函数图象的识别和判断,利用函数值的符号以及极限思想是解决本题的关键,属于基础题.7.C【解析】
令,则,,将指数式化成对数式得、后,然后取绝对值作差比较可得.【详解】令,则,,,,,因此,.故选:C.【点睛】本题考查了利用作差法比较大小,同时也考查了指数式与对数式的转化,考查推理能力,属于中等题.8.D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.9.D【解析】,则故选D.10.B【解析】
由数量积的定义表示出向量与的夹角为,再由,代入表达式中即可求出.【详解】由向量与的夹角为,得,所以,又,,,,所以,解得.故选:B【点睛】本题主要考查向量数量积的运算和向量的模长平方等于向量的平方,考查学生的计算能力,属于基础题.11.C【解析】分析:解决该题的关键是求得等比数列的公比,利用题中所给的条件,建立项之间的关系,从而得到公比所满足的等量关系式,解方程即可得结果.详解:根据题意有,即,因为数列各项都是正数,所以,而,故选C.点睛:该题应用题的条件可以求得等比数列的公比,而待求量就是,代入即可得结果.12.B【解析】
根据题意,建立平面直角坐标系.令.为中点.由即可求得点的轨迹方程.将变形,结合及平面向量基本定理可知三点共线.由圆切线的性质可知的最小值即为到直线的距离最小值,且当与圆相切时,有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为的最大值.【详解】根据题意,设,则由代入可得即点的轨迹方程为又因为,变形可得,即,且所以由平面向量基本定理可知三点共线,如下图所示:所以的最小值即为到直线的距离最小值根据圆的切线性质可知,当与圆相切时,有最大值设切线的方程为,化简可得由切线性质及点到直线距离公式可得,化简可得即所以切线方程为或所以当变化时,到直线的最大值为即的最大值为故选:B【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用,圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.二、填空题:本题共4小题,每小题5分,共20分。13.-20【解析】
根据二项式定理的通项公式,再分情况考虑即可求解.【详解】解:展开式中项的系数:二项式由通项公式当时,项的系数是,当时,项的系数是,故的系数为;故答案为:【点睛】本题主要考查二项式定理的应用,注意分情况考虑,属于基础题.14.【解析】
根据定积分的计算,得到,令,求得,即可得到答案.【详解】根据定积分的计算,可得,令,则,即的展开式中各项系数和为.【点睛】本题主要考查了定积分的应用,以及二项式定理的应用,其中解答中根据定积分的计算和二项式定理求得的表示是解答本题的关键,着重考查了运算与求解能力,属于基础题.15.-7【解析】
由题意得AB+【详解】由题意得ABBC+∴AB+【点睛】突破本题的关键是抓住题中所给图形的特点,利用平面向量基本定理和向量的加减运算,将所给向量统一用AC,16.①②③【解析】
通过图片信息直接观察,计算,找出答案即可.【详解】对于①,2至月份的收入的变化率为20,11至12月份的变化率为20,故相同,正确.对于②,支出最高值是2月份60万元,支出最低值是5月份的10万元,故支出最高值与支出最低值的比是6:1,正确.对于③,第三季度的7,8,9月每个月的收入分别为40万元,50万元,60万元,故第三季度的平均收入为50万元,正确.对于④,利润最高的月份是3月份和10月份都是30万元,高于2月份的利润是80﹣60=20万元,错误.故答案为①②③.【点睛】本题考查利用图象信息,分析归纳得出正确结论,属于基础题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)见解析,有99%的把握认为经常阅读与居民居住地有关.(2)【解析】
(1)根据题意填写列联表,利用公式求出,比较与6.635的大小得结论;(2)由样本数据可得经常阅读的人的概率是,则,根据二项分布的期望公式计算可得;【详解】解:(1)由题意可得:城镇居民农村居民合计经常阅读10030130不经常阅读403070合计14060200则,所以有99%的把握认为经常阅读与居民居住地有关.(2)根据样本估计,从该地区城镇居民中随机抽取1人,抽到经常阅读的人的概率是,且,所以随机变量的期望为.【点睛】本题考查独立性检验的应用,考查离散型随机变量的数学期望的计算,考查运算求解能力,属于基础题.18.(1);(2)证明见解析【解析】
(1)利用零点分段法将表示为分段函数的形式,由此解不等式求得不等式的解集.(2)将不等式坐标因式分解,结合(1)的结论证得不等式成立.【详解】(1)解:,由,解得,故.(2)证明:因为,所以,,所以,所以.【点睛】本小题主要考查绝对值不等式的解法,考查不等式的证明,属于基础题.19.(1)见解析.(1)(-1,0).【解析】试题分析:(1)直接计算f(x)+f(-1(1)f(x)+f(2x)=|x-a|+|2x-a|,分区间讨论去绝对值符号分别解不等式即可.试题解析:(1)证明:函数f(x)=|x﹣a|,a<2,则f(x)+f(﹣)=|x﹣a|+|﹣﹣a|=|x﹣a|+|+a|≥|(x﹣a)+(+a)|=|x+|=|x|+≥1=1.(1)f(x)+f(1x)=|x﹣a|+|1x﹣a|,a<2.当x≤a时,f(x)=a﹣x+a﹣1x=1a﹣3x,则f(x)≥﹣a;当a<x<时,f(x)=x﹣a+a﹣1x=﹣x,则﹣<f(x)<﹣a;当x时,f(x)=x﹣a+1x﹣a=3x﹣1a,则f(x)≥﹣.则f(x)的值域为[﹣,+∞).不等式f(x)+f(1x)<的解集非空,即为>﹣,解得,a>﹣1,由于a<2,则a的取值范围是(-1,0).考点:1.含绝对值不等式的证明与解法.1.基本不等式.20.(Ⅰ)证明见解析(Ⅱ).(Ⅲ)﹣.【解析】
(Ⅰ)由题知,如图以点为原点,直线分别为轴,建立空间直角坐标系,计算,证明,从而平面PAC,即可得证;(Ⅱ)求解平面PDE的一个法向量,计算,即可得直线PC与平面PDE所成角的正弦值;(Ⅲ)求解平面PBE的一个法向量,计算,即可得二面角D﹣PE﹣B的余弦值.【详解】(Ⅰ)PC⊥底面ABCD,,如图以点为原点,直线分别为轴,建立空间直角坐标系,则,,,,又,平面PAC,平面PDE,平面PDE⊥平面PAC;(Ⅱ)设为平面PDE的一个法向量,又,则,取,得,直线PC与平面PDE所成角的正弦值;(Ⅲ)设为平面PBE的一个法向量,又则,取,得,,二面角D﹣PE﹣B的余弦值﹣.【点睛】本题主要考查了平面与平面的垂直,直线与平面所成角的计算,二面角大小的求解,考查了空间向量在立体几何中的应用,考查了学生的空间想象能力与运算求解能力.21.(1)见解析,,x[0,1];(2)P(,)时,视角∠EPF最大.【解析】
(1)以A为原点,l1为x轴,抛物线的对称轴为y轴建系,设出方程,通过点的坐标可求方程;(2)设出的坐标,表示出,利用基本不等式求解的最大值,从而可得观测点P的坐标.【详解】(1)以A为原点,l1为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60364-1:2025 EN-FR Low-voltage electrical installations - Part 1: Fundamental principles,assessment of general characteristics,and definitions
- 麦当劳点餐课件
- 品鉴智慧人生课件
- 直销领袖魅力课件
- 滑雪培训机构介绍
- 孕妇学校知识课件
- 质量意识培训课程
- 暑假班绘画课件
- 恐龙手工课课件
- 课件最后一页祝福语
- 建筑垃圾处理技术标准(CJJT 134-2019)
- 五年级美术素养测评模拟测试
- 木工课堂安全管理制度
- 《AIGC应用实战:写作、绘图、视频制作、直播》-课件 第七章 即梦的使用方法;第八章 AI直播
- 运动康复项目介绍
- 2025中国地中海贫血祛铁治疗指南解读
- 产品标签管理制度
- 妊娠期女性的护理
- 2025-2030中国自闭症治疗行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国除尘设备行业市场发展分析及前景趋势与投资研究报告
- 开学第一课校园防骗课件(小学生)
评论
0/150
提交评论