2023年高一数学必修1第一章知识点归纳_第1页
2023年高一数学必修1第一章知识点归纳_第2页
2023年高一数学必修1第一章知识点归纳_第3页
2023年高一数学必修1第一章知识点归纳_第4页
2023年高一数学必修1第一章知识点归纳_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高一数学必修1第一章知识点归纳【#高一#导语】以下是我为大家推举的有关高一数学必修1第一章学问点归纳,假如觉得很不错,欢迎点评和共享~感谢你的阅读与支持!

一:函数模型及其应用

本节主要包括函数的模型、函数的应用等学问点。主要是理解函数解应用题的一般步骤敏捷利用函数解答实际应用题。

1、常见的函数模型有一次函数模型、二次函数模型、指数函数模型、对数函数模型、分段函数模型等。

2、用函数解应用题的基本步骤是:(1)阅读并且理解题意.(关键是数据、字母的实际意义);(2)设量建模;(3)求解函数模型;(4)简要回答实际问题。

常见考法:

本节学问在段考和高考中考查的形式多样,频率较高,选择题、填空题和解答题都有。多考查分段函数和较简单的函数的最值等问题,属于拔高题,难度较大。

误区提示:

1、求解应用性问题时,不仅要考虑函数本身的定义域,还要结合实际问题理解自变量的取值范围。

2、求解应用性问题时,首先要弄清题意,分清条件和结论,抓住关键词和量,理顺数量关系,然后将文字语言转化成数学语言,建立相应的数学模型。

【典型例题】

例1:

(1)某种储蓄的月利率是0.36%,今存入本金100元,求本金与利息的和(即本息和)y(元)与所存月数x之间的函数关系式,并计算5个月后的本息和(不计复利).

(2)按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y随存期x变化的函数式.假如存入本金1000元,每期利率2.25%,试计算5期后的本利和是多少?解:(1)利息=本金×月利率×月数.y=100+100×0.36%·x=100+0.36x,当x=5时,y=101.8,∴5个月后的本息和为101.8元.

例2:

某民营企业生产A,B两种产品,依据市场调查和猜测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式。

(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样安排这10万元投资,才能是企业获得利润,其利润约为多少万元。(精确到1万元)。

二:幂函数

定义:

形如y=x^a(a为常数)的函数,即以底数为自变量幂为因变量,指数为常量的函数称为幂函数。

定义域和值域:

当a为不同的数值时,幂函数的定义域的不怜悯况如下:假如a为任意实数,则函数的定义域为大于0的全部实数;假如a为负数,则x确定不能为0,不过这时函数的定义域还必需根[据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。当x为不同的数值时,幂函数的值域的不怜悯况如下:在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域

性质:

对于a的取值为非零有理数,有必要分成几种状况来争论各自的特性:

首先我们知道假如a=p/q,q和p都是整数,则x^(p/q)=q次根号(x的p次方),假如q是奇数,函数的定义域是r,假如q是偶数,函数的定义域是[0,+∞),

当指数n是负整数时,设a=-k,则x=1/(x^k),明显x≠0,函数的定义域是(-∞,0)∪(0,+∞).因此可以看到x所受到的限制来源于两点,一是有可能作为分母而不能是0,一是有可能在偶数次的根号下而不能为负数,那么我们就可以知道:

排解了为0与负数两种可能,即对于x0,则a可以是任意实数;

排解了为0这种可能,即对于x0和x0的全部实数,q不能是偶数;

排解了为负数这种可能,即对于x为大于且等于0的全部实数,a就不能是负数。总结起来,就可以得到当a为不同的数值时,幂函数的定义域的不怜悯况如下:

假如a为任意实数,则函数的定义域为大于0的全部实数;

假如a为负数,则x确定不能为0,不过这时函数的定义域还必需依据q的奇偶性来确定,即假如同时q为偶数,则x不能小于0,这时函数的定义域为大于0的全部实数;假如同时q为奇数,则函数的定义域为不等于0的全部实数。

在x大于0时,函数的值域总是大于0的实数。

在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。

而只有a为正数,0才进入函数的值域。

由于x大于0是对a的任意取值都有意义的,因此下面给出幂函数在第一象限的各自状况.

可以看到:

(1)全部的图形都通过(1,1)这点。

(2)当a大于0时,幂函数为单调递增的,而a小于0时,幂函数为单调递减函数。

(3)当a大于1时,幂函数图形下凹;当a小于1大于0时,幂函数图形上凸。

(4)当a小于0时,a越小,图形倾斜程度越大。

(5)a大于0,函数过(0,0);a小于0,函数不过(0,0)点。

(6)明显幂函数*。

三:对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,由于它们互为反函数。

(1)对数函数的定义域为大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论