2022-2023学年贵州省遵义市中考数学四模试卷含解析_第1页
2022-2023学年贵州省遵义市中考数学四模试卷含解析_第2页
2022-2023学年贵州省遵义市中考数学四模试卷含解析_第3页
2022-2023学年贵州省遵义市中考数学四模试卷含解析_第4页
2022-2023学年贵州省遵义市中考数学四模试卷含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的()A.方差 B.中位数 C.众数 D.平均数2.若关于x的方程是一元二次方程,则m的取值范围是()A.. B.. C. D..3.如图,AD是⊙O的弦,过点O作AD的垂线,垂足为点C,交⊙O于点F,过点A作⊙O的切线,交OF的延长线于点E.若CO=1,AD=2,则图中阴影部分的面积为A.4-π B.2-πC.4-π D.2-π4.下列因式分解正确的是A. B.C. D.5.如图,在平行四边形ABCD中,AB=4,BC=6,分别以A,C为圆心,以大于AC的长为半径作弧,两弧相交于M,N两点,作直线MN交AD于点E,则△CDE的周长是()A.7 B.10 C.11 D.126.如图1是2019年4月份的日历,现用一长方形在日历表中任意框出4个数(如图2),下列表示a,b,c,d之间关系的式子中不正确的是()A.a﹣d=b﹣c B.a+c+2=b+d C.a+b+14=c+d D.a+d=b+c7.下列式子中,与互为有理化因式的是()A. B. C. D.8.学校小组名同学的身高(单位:)分别为:,,,,,则这组数据的中位数是().A. B. C. D.9.在,0,-1,这四个数中,最小的数是()A. B.0 C. D.-110.已知二次函数y=(x+m)2–n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象可能是()A. B. C. D.11.如图是一个正方体被截去一角后得到的几何体,从上面看得到的平面图形是()A. B. C. D.12.PM2.5是指大气中直径小于或等于2.5μm(0.0000025m)的颗粒物,含有大量有毒、有害物质,也称为可入肺颗粒物,将25微米用科学记数法可表示为()米.A.25×10﹣7B.2.5×10﹣6C.0.25×10﹣5D.2.5×10﹣5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,抛物线可通过平移变换向__________得到抛物线,其对称轴与两段抛物线所围成的阴影部分(如图所示)的面积是__________.14.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是___.15.若式子有意义,则x的取值范围是______.16.因式分解a3-6a2+9a=_____.17.如图,在网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠OAB的正弦值是_____.18.已知x+y=,xy=,则x2y+xy2的值为____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC中,∠C=90°,BC=4,AC=1.点P是斜边AB上一点,过点P作PM⊥AB交边AC或BC于点M.又过点P作AC的平行线,与过点M的PM的垂线交于点N.设边AP=x,△PMN与△ABC重合部分图形的周长为y.(1)AB=.(2)当点N在边BC上时,x=.(1)求y与x之间的函数关系式.(4)在点N位于BC上方的条件下,直接写出过点N与△ABC一个顶点的直线平分△ABC面积时x的值.20.(6分)如图1,2分别是某款篮球架的实物图与示意图,已知底座BC的长为0.60m,底座BC与支架AC所成的角∠ACB=75°,点A、H、F在同一条直线上,支架AH段的长为1m,HF段的长为1.50m,篮板底部支架HE的长为0.75m.求篮板底部支架HE与支架AF所成的角∠FHE的度数.求篮板顶端F到地面的距离.(结果精确到0.1m;参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,≈1.732,≈1.414)21.(6分)某班为确定参加学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图.(1)根据图中所给信息填写下表:投中个数统计平均数中位数众数A8B77(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明.22.(8分)如图,在△ABC中,∠ACB=90°,AC=1.sin∠A=,点D是BC的中点,点P是AB上一动点(不与点B重合),延长PD至E,使DE=PD,连接EB、EC.(1)求证;四边形PBEC是平行四边形;(2)填空:①当AP的值为时,四边形PBEC是矩形;②当AP的值为时,四边形PBEC是菱形.23.(8分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?24.(10分)解不等式组:,并写出它的所有整数解.25.(10分)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;小王自网店开业起,最快在第几个月可还清10万元的无息贷款?26.(12分)如图,BD为△ABC外接圆⊙O的直径,且∠BAE=∠C.求证:AE与⊙O相切于点A;若AE∥BC,BC=2,AC=2,求AD的长.27.(12分)△ABC在平面直角坐标系中的位置如图所示.画出△ABC关于y轴对称的△A1B1C1;将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差2、A【解析】

根据一元二次方程的定义可得m﹣1≠0,再解即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选A.【点睛】此题主要考查了一元二次方程的定义,关键是掌握只含有一个未知数,并且未知数的最高次数是2的整式方程叫一元二次方程.3、B【解析】

由S阴影=S△OAE-S扇形OAF,分别求出S△OAE、S扇形OAF即可;【详解】连接OA,OD

∵OF⊥AD,

∴AC=CD=,

在Rt△OAC中,由tan∠AOC=知,∠AOC=60°,

则∠DOA=120°,OA=2,

∴Rt△OAE中,∠AOE=60°,OA=2

∴AE=2,S阴影=S△OAE-S扇形OAF=×2×2-.故选B.【点睛】考查了切线的判定和性质;能够通过作辅助线将所求的角转移到相应的直角三角形中,是解答此题的关键要证某线是圆的切线,对于切线的判定:已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.4、D【解析】

直接利用提取公因式法以及公式法分解因式,进而判断即可.【详解】解:A、,无法直接分解因式,故此选项错误;B、,无法直接分解因式,故此选项错误;C、,无法直接分解因式,故此选项错误;D、,正确.故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.5、B【解析】∵四边形ABCD是平行四边形,

∴AD=BC=4,CD=AB=6,

∵由作法可知,直线MN是线段AC的垂直平分线,

∴AE=CE,

∴AE+DE=CE+DE=AD,

∴△CDE的周长=CE+DE+CD=AD+CD=4+6=1.

故选B.6、A【解析】

观察日历中的数据,用含a的代数式表示出b,c,d的值,再将其逐一代入四个选项中,即可得出结论.【详解】解:依题意,得:b=a+1,c=a+7,d=a+1.A、∵a﹣d=a﹣(a+1)=﹣1,b﹣c=a+1﹣(a+7)=﹣6,∴a﹣d≠b﹣c,选项A符合题意;B、∵a+c+2=a+(a+7)+2=2a+9,b+d=a+1+(a+1)=2a+9,∴a+c+2=b+d,选项B不符合题意;C、∵a+b+14=a+(a+1)+14=2a+15,c+d=a+7+(a+1)=2a+15,∴a+b+14=c+d,选项C不符合题意;D、∵a+d=a+(a+1)=2a+1,b+c=a+1+(a+7)=2a+1,∴a+d=b+c,选项D不符合题意.故选:A.【点睛】考查了列代数式,利用含a的代数式表示出b,c,d是解题的关键.7、B【解析】

直接利用有理化因式的定义分析得出答案.【详解】∵()(,)=12﹣2,=10,∴与互为有理化因式的是:,故选B.【点睛】本题考查了有理化因式,如果两个含有二次根式的非零代数式相乘,它们的积不含有二次根式,就说这两个非零代数式互为有理化因式.单项二次根式的有理化因式是它本身或者本身的相反数;其他代数式的有理化因式可用平方差公式来进行分步确定.8、C【解析】

根据中位数的定义进行解答【详解】将5名同学的身高按从高到矮的顺序排列:159、156、152、151、147,因此这组数据的中位数是152.故选C.【点睛】本题主要考查中位数,解题的关键是熟练掌握中位数的定义:一组数据按从小到大(或从大到小)的顺序依次排列,处在中间位置的一个数(或最中间两个数据的平均数)称为中位数.9、D【解析】试题分析:因为负数小于0,正数大于0,正数大于负数,所以在,0,-1,这四个数中,最小的数是-1,故选D.考点:正负数的大小比较.10、C【解析】试题解析:观察二次函数图象可知:∴一次函数y=mx+n的图象经过第一、二、四象限,反比例函数的图象在第二、四象限.故选D.11、B【解析】

根据俯视图是从上面看到的图形可得俯视图为正方形以及右下角一个三角形.【详解】从上面看,是正方形右边有一条斜线,如图:故选B.【点睛】考查了三视图的知识,根据俯视图是从物体的上面看得到的视图得出是解题关键.12、B【解析】

由科学计数法的概念表示出0.0000025即可.【详解】0.0000025=2.5×10﹣6.故选B.【点睛】本题主要考查科学计数法,熟记相关概念是解题关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、先向右平移2个单位再向下平移2个单位;4【解析】.平移后顶点坐标是(2,-2),利用割补法,把x轴上方阴影部分补到下方,可以得到矩形面积,面积是.14、2n+1【解析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为2+n.此题考查的是图形数字的变化类问题,关键是通过观察分析得出规律,根据规律求解.15、x>.【解析】解:依题意得:2x+3>1.解得x>.故答案为x>.16、a(a-3)2【解析】

根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:故答案为:.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.17、【解析】

如图,过点O作OC⊥AB的延长线于点C,则AC=4,OC=2,在Rt△ACO中,AO=,∴sin∠OAB=.故答案为.18、3【解析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2;(2);(1)详见解析;(4)满足条件的x的值为.【解析】

(1)根据勾股定理可以直接求出(2)先证明四边形PAMN是平行四边形,再根据三角函数值求解(1)分情况根据t的大小求出不同的函数关系式(4)不同条件下:当点G是AC中点时和当点D是AB中点时,根据相似三角形的性质求解.【详解】解:(1)在中,,故答案为2.(2)如图1中,∴四边形PAMN是平行四边形,当点在上时,,.(1)①当时,如图1,.②当时,如图2,y③当时,如图1,(4)如图4中,当点是中点时,满足条件.如图2中,当点是中点时,满足条件..综上所述,满足条件的x的值为或.【点睛】此题重点考查学生对一次函数的应用,勾股定理,平行四边形的判定,相似三角形的性质和三角函数值的综合应用能力,熟练掌握勾股定理和三角函数值的解法是解题的关键.20、(1)∠FHE=60°;(2)篮板顶端F到地面的距离是4.4米.【解析】

(1)直接利用锐角三角函数关系得出cos∠FHE=,进而得出答案;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,解直角三角形即可得到结论.【详解】(1)由题意可得:cos∠FHE=,则∠FHE=60°;(2)延长FE交CB的延长线于M,过A作AG⊥FM于G,在Rt△ABC中,tan∠ACB=,∴AB=BC•tan75°=0.60×3.732=2.2392,∴GM=AB=2.2392,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,∴sin60°==,∴FG≈2.17(m),∴FM=FG+GM≈4.4(米),答:篮板顶端F到地面的距离是4.4米.【点睛】本题考查解直角三角形、锐角三角函数、解题的关键是添加辅助线,构造直角三角形,记住锐角三角函数的定义.21、(1)7,9,7;(2)应该选派B;【解析】

(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案.【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)=[(7﹣9)2+(7﹣10)2+(7﹣4)2+(7﹣3)2+(7﹣9)2+(7﹣7)2]=7;=[(7﹣7)2+(7﹣7)2+(7﹣8)2+(7﹣7)2+(7﹣6)2+(7﹣7)2]=;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B.【点睛】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.22、证明见解析;(2)①9;②12.5.【解析】

(1)根据对角线互相平分的四边形为平行四边形证明即可;(2)①若四边形PBEC是矩形,则∠APC=90°,求得AP即可;②若四边形PBEC是菱形,则CP=PB,求得AP即可.【详解】∵点D是BC的中点,∴BD=CD.∵DE=PD,∴四边形PBEC是平行四边形;(2)①当∠APC=90°时,四边形PBEC是矩形.∵AC=1.sin∠A=,∴PC=12,由勾股定理得:AP=9,∴当AP的值为9时,四边形PBEC是矩形;②在△ABC中,∵∠ACB=90°,AC=1.sin∠A=,所以设BC=4x,AB=5x,则(4x)2+12=(5x)2,解得:x=5,∴AB=5x=2.当PC=PB时,四边形PBEC是菱形,此时点P为AB的中点,所以AP=12.5,∴当AP的值为12.5时,四边形PBEC是菱形.【点睛】本题考查了菱形的判定、平行四边形的判定和性质、矩形的判定,解题的关键是掌握特殊图形的判定以及重要的性质.23、(1);(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】

(1)根据销售额=销售量×销售价单x,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x,根据x的取值范围求x的值.【详解】解:(1)由题意得:,∴w与x的函数关系式为:.(2),∵﹣2<0,∴当x=30时,w有最大值.w最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x﹣30)2+2=150,解得x1=25,x2=3.∵3>28,∴x2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.24、﹣2,﹣1,0,1,2;【解析】

首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可.【详解】解:解不等式(1),得解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,225、(1)当4≤x≤6时,w1=﹣x2+12x﹣35,当6≤x≤8时,w2=﹣x2+7x﹣23;(2)最快在第7个月可还清10万元的无息贷款.【解析】分析:(1)y(万件)与销售单价x是分段函数,根据待定系数法分别求直线AB和BC的解析式,又分两种情况,根据利润=(售价﹣成本)×销售量﹣费用,得结论;(2)分别计算两个利润的最大值,比较可得出利润的最大值,最后计算时间即可求解.详解:(1)设直线AB的解析式为:y=kx+b,代入A(4,4),B(6,2)得:,解得:,∴直线AB的解析式为:y=﹣x+8,同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,∵工资及其他费作为:0.4×5+1=3万元,∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(2)当4≤x≤6时,w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,∴当x=6时,w1取最大值是1,当6≤x≤8时,w2=﹣x2+7x﹣23=﹣(x﹣7)2+,当x=7时,w2取最大值是1.5,∴==6,即最快在第7个月可还清10万元的无息贷款.点睛:本题主要考查学生利用待定系数法求解一次函数关系式,一次函数与一次不等式的应用,利用数形结合的思想,是一道综合性较强的代数应用题,能力要求比较高.26、(1)证明见解析;(2)AD=2.【解析】

(1)如图,连接OA,根据同圆的半径相等可得:∠D=∠DAO,由同弧所对的圆周角相等及已知得:∠BAE=∠DAO,再由直径所对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论