2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)_第1页
2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)_第2页
2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)_第3页
2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)_第4页
2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山西省临汾市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3

2.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

3.从1、2、3、4、5五个数字中任取1数,则抽中偶数的概率是()A.0B.1/5C.3/5D.2/5

4.A.B.C.D.

5.椭圆的焦点坐标是()A.(,0)

B.(±7,0)

C.(0,±7)

D.(0,)

6.若102x=25,则10-x等于()A.

B.

C.

D.

7.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

8.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

9.设AB是抛物线上的两点,O为原点,OA丄OB,A点的横坐标是-1,则B点的横坐标为()A.lB.4C.8D.16

10.A.B.C.D.

11.A=,是AB=的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件

12.在等差数列{an}中,若a2=3,a5=9,则其前6项和S6=()A.12B.24C.36D.48

13.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

14.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

15.袋中有大小相同的三个白球和两个黑球,从中任取两个球,两球同色的概率为()A.1/5B.2/5C.3/5D.4/5

16.A.-1B.-4C.4D.2

17.已知,则sin2α-cos2α的值为()A.-1/8B.-3/8C.1/8D.3/8

18.A.15,5,25B.15,15,15C.10,5,30D.15,10,20

19.公比为2的等比数列{an}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8

20.已知函数f(x)=㏒2x,在区间[1,4]上随机取一个数x,使得f(x)的值介于-1到1之间的概率为A.1/3B.3/4C.1/2D.2/3

二、填空题(10题)21.若长方体的长、宽、高分别为1,2,3,则其对角线长为

22.若ABC的内角A满足sin2A=则sinA+cosA=_____.

23.1+3+5+…+(2n-b)=_____.

24.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.

25.在△ABC中,C=60°,AB=,BC=,那么A=____.

26.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

27.

28.

29.若向量a=(2,-3)与向量b=(-2,m)共线,则m=

30.右图是一个算法流程图.若输入x的值为1/16,则输出y的值是____.

三、计算题(10题)31.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

32.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

33.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

34.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

35.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

37.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

38.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

39.解不等式4<|1-3x|<7

40.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

四、简答题(10题)41.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

42.计算

43.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

44.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

45.在等差数列中,已知a1,a4是方程x2-10x+16=0的两个根,且a4>a1,求S8的值

46.在ABC中,AC丄BC,ABC=45°,D是BC上的点且ADC=60°,BD=20,求AC的长

47.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

48.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

49.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

50.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

五、解答题(10题)51.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.

52.

53.已知函数f(x)=x2-2ax+a,(1)当a=2时,求函数f(x)在[0,3]上的值域;(2)若a<0,求使函数f(x)=x2-2ax+a的定义域为[―1,1],值域为[一2,2]的a的值.

54.

55.求函数f(x)=x3-3x2-9x+5的单调区间,极值.

56.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

57.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

58.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.

59.已知圆C的圆心在直线y=x上,半径为5且过点A(4,5),B(1,6)两点.(1)求圆C的方程;(2)过点M(-2,3)的直线l被圆C所截得的线段的长为8,求直线l的方程.

60.

六、单选题(0题)61.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

参考答案

1.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3

2.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.

3.D由于在5个数中只有两个偶数,因此抽中偶数的概率为2/5。

4.D

5.D

6.B

7.A

8.B由题可知,3-x2大于0,所以定义域为(-3,3)

9.D

10.D

11.AA是空集可以得到A交B为空集,但是反之不成立,因此时充分条件。

12.C等差数列前n项和公式.设

13.A

14.C直线的点斜式方程∵直线l与直线y=-4x+2平行,∴直线l的斜率为-4,又直线l过点(0,7),∴直线l的方程为y-7=-4(x-0),即y=-4x+7.

15.B

16.C

17.B三角函数的恒等变换,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8

18.D

19.A

20.A几何概型的概率.由-1<㏒2x≤1,得1<x<2;而[1,4]∩[1/2,2]=[1,2]区间长度为1,区间[1,4]长度为3,所求概率为1/3

21.

22.

23.n2,

24.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3

25.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.

26.36,

27.-1/2

28.10函数值的计算.由=3,解得a=10.

29.3由于两向量共线,所以2m-(-2)(-3)=0,得m=3.

30.-2算法流程图的运算.初始值x=1/16不满足x≥1,所以y=2+㏒21/16=2-㏒224=-2,故答案-2.

31.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

32.

33.

34.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

35.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.方程的两个根为2和8,又∴又∵a4=a1+3d,∴d=2∵。

46.在指数△ABC中,∠ABC=45°,AC=BC在直角△ADC中,∠ADC=60°,CD=ACCD=BC-BD,BD=20则,则

47.

48.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

49.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

50.

51.

52.

53.

54.

55.f(x)=x3-6x-9=3(x+1)(x-3)令f(x)>0,∴x>3或x,-1.令f(x)<0时,-1<x<3.∴f(x)单调增区间为(-∞,-1],[3,+∞),单调减区间为[-1,3].f(x)极大值为f(-1)=l0,f(x)极小值为f(3)=-22.

56.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论