




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年黑龙江省佳木斯市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若x2-ax+b<0的解集为(1,2),则a+b=()A.5B.-5C.1D.-1
2.设是l,m两条不同直线,α,β是两个不同平面,则下列命题中正确的是()A.若l//α,α∩β=m,则l//m
B.若l//α,m⊥l,则m⊥α
C.若l//α,m//α,则l//m
D.若l⊥α,l///β则a⊥β
3.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定
4.下表是某厂节能降耗技术改造后生产某产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据,用最小二乘法得到y关于x的线性回归方程y^=0.7x+a,则a=()A.0.25B.0.35C.0.45D.0.55
5.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为A.1
B.2
C.
D.2
6.已知一元二次不等式ax2+bx+1>0的解是<x<,那么()A.
B.
C.
D.
7.下列命题是真命题的是A.B.C.D.
8.A.b>a>0B.b<a<0C.a>b>0D.a<b<0
9.直线ax+by+b-a=0与圆x2+y2-x-2=0的位置关系是()A.相离B.相交C.相切D.无关
10.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
11.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.0B.-8C.2D.10
12.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角
13.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5
B.2/5
C.
D.
14.函数y=3sin+4cos的周期是()A.2πB.3πC.5πD.6π
15.某四棱锥的三视图如图所示,该四棱锥最长棱的棱长为()A.1
B.
C.
D.2
16.A.
B.
C.
17.已知椭圆x2/25+y2/m2=1(m<0)的右焦点为F1(4,0),则m=()A.-4B.-9C.-3D.-5
18.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.
B.
C.
D.
19.下列函数是奇函数的是A.y=x+3
B.C.D.
20.己知向量a=(3,-2),b=(-1,1),则3a+2b
等于()A.(-7,4)B.(7,4)C.(-7,-4)D.(7,-4)
二、填空题(10题)21.秦九昭是我国南宋时期的数学家,他在所著的《数学九章》中提出的多项式求值的秦九昭算法,至今仍是比较先进的算法,如图所示的程序框图给出了利用秦九昭算法求某多项式值的一个实例,若输入n,x的值分别为3,4,则输出v的值为________.
22.等差数列中,a1>0,S4=S9,Sn取最大值时,n=_____.
23.
24.已知函数f(x)=ax3的图象过点(-1,4),则a=_______.
25.如图是一个算法流程图,则输出S的值是____.
26.某程序框图如下图所示,该程序运行后输出的a的最大值为______.
27.
28.双曲线3x2-y2=3的渐近线方程是
。
29.
30.在:Rt△ABC中,已知C=90°,c=,b=,则B=_____.
三、计算题(10题)31.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
32.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。
33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。
34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
35.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
36.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
37.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.
38.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
39.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
40.解不等式4<|1-3x|<7
四、简答题(10题)41.在拋物线y2=12x上有一弦(两端点在拋物线上的线段)被点M(1,2)平分.(1)求这条弦所在的直线方程;(2)求这条弦的长度.
42.已知cos=,,求cos的值.
43.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。
44.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。
45.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数
46.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。
47.已知求tan(a-2b)的值
48.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
49.已知的值
50.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
五、解答题(10题)51.
52.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为,其中左焦点F(-2,0).(1)求椭圆C的方程;(2)若直线:y=x+m与椭圆C交于不同的两点A,B,且线段AB的中点M在圆:x2+y2=l上,求m的值.
53.A.90B.100C.145D.190
54.
55.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.
56.已知函数f(x)=x3-3x2-9x+1.(1)求函数f(x)的单调区间.(2)若f(x)-2a+1≥0对Vx∈[-2,4]恒成立,求实数a的取值范围.
57.已知直线经过椭圆C:x2/a2+y2/b2=1(a>b>0)的一个顶点B和一个焦点F.(1)求椭圆的离心率;(2)设P是椭圆C上动点,求|PF|-|PB|的取值范围,并求|PF|-|PB||取最小值时点P的坐标.
58.已知函数f(x)=sinx+cosx,x∈R.(1)求函数f(x)的最小正周期和最大值;(2)函数y=f(x)的图象可由y=sinx的图象经过怎样的变换得到?
59.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
60.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.
六、单选题(0题)61.两个平面之间的距离是12cm,—条直线与他们相交成的60°角,则这条直线夹在两个平面之间的线段长为()A.cm
B.24cm
C.cm
D.cm
参考答案
1.A一元二次不等式与一元二次方程的应用,根与系数的关系的应用问题.即方程x2-ax+b=0的两根为1,2.由根与系数关系得解得a=3.所以a+b=5.
2.D空间中直线与平面的位置关系,平面与平面的位置关系.对于A:l与m可能异面,排除A;对于B;m与α可能平行或相交,排除B;对于C:l与m可能相交或异面,排除C
3.A数值的大小判断
4.B线性回归方程的计算.由题可以得出
5.C点到直线的距离公式.圆(x+l)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=
6.B由一元二次方程得求根公式可知,x1x2=-b/2a/=-1/3,所以b/a=-1/6.
7.A
8.D
9.B
10.D
11.B直线之间位置关系的性质.由k=4-m/m+2=-2,得m=-8.
12.D
13.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=
14.Dy=3sin(x/3)+4cos(x/3)=5[3/5sin(x/3)+4/5cos(x/3)]=5sin(x/3+α),所以最小正周期为6π。
15.C四棱锥的直观图.四棱锥的直观图如图所示,PC⊥平面ABCD,PC=1,底面四边形ABCD为正方形且边长为1,最长棱长
16.B
17.C椭圆的定义.由题意知25-m2=16,解得m2=9,又m<0,所以m=-3.
18.C
19.C
20.D
21.100程序框图的运算.初始值n=3,x=4,程序运行过程如下表所示:v=1,i=2,v=1×4+2=6,i=1,v=6×4+l=25,i=0,v=25×4+0=100,i=-1跳出循环,输出v的值为100.
22.6或7,由题可知,4a1+6d=9a1+36d,解得a1=-6d,所以Sn=-6dn+n(n+1)d/2=,又因为a1大于0,d小于0,所以当n=6或7时,Sn取最大值。
23.(3,-4)
24.-2函数值的计算.由函数f(x)=ax3-2x过点(-1,4),得4=a(-1)3-2×(-1),解得a=-2.
25.25程序框图的运算.经过第一次循环得到的结果为S=1,n=3,过第二次循环得到的结果为S=4,72=5,经过第三次循环得到的结果为S=9,n=7,经过第四次循环得到的结果为s=16,n=9经过第五次循环得到的结果为s=25,n=11,此时不满足判断框中的条件输出s的值为25.故答案为25.
26.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.
27.√2
28.
,
29.16
30.45°,由题可知,因此B=45°。
31.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
32.
33.
34.
35.
36.
37.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为
38.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
39.
40.
41.∵(1)这条弦与抛物线两交点
∴
42.
43.
44.(1)-1<x<1(2)奇函数(3)单调递增函数
45.
46.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)
47.
48.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
49.
∴∴则
50.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
51.
52.
53.B
54.
55.
56.
57.
58.(1)函数f(x)=sinx+cosx=sin(x+π/4),∴f(x)的最小正周期是2π,最大值是(2)将y=sinx的图象向左平行移动π/4个单位,得到sin(x+π/4)的图象,再将y==sin(x+π/4)的图象上每-点的纵坐标伸长到原来的倍,横坐标不变,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 实验1 研究匀变速直线运动-2023年高考物理实验专项突破(原卷版)
- 老年人安全游泳知识培训课件
- 第五节 双曲线 2026年高三数学第一轮总复习
- 脑溢血的死亡率有多高
- 天气与气候-2024年中考地理一轮复习知识清单(扣空版)
- 人工智能通识教程(微课版) 课件 04 人工智能技术的觉醒-深度学习技术框架
- 上海市某中学2025-2026学年高三年级上册暑期考试数学试卷(7月份)
- CN120203212A 一种以米粒为支架一步法培养大黄鱼细胞为动植物复合食品的方法
- CN120201845A 一种有机半导体异质结光子突触晶体管及其制备方法
- CN120200250A 一种基于企业供电服务画像的供电服务策略优化方法
- GB/T 6344-2008软质泡沫聚合材料拉伸强度和断裂伸长率的测定
- GB/T 39201-2020高铝粉煤灰提取氧化铝技术规范
- GB/T 3836.4-2021爆炸性环境第4部分:由本质安全型“i”保护的设备
- GB/T 20801.6-2020压力管道规范工业管道第6部分:安全防护
- GB/T 19355.2-2016锌覆盖层钢铁结构防腐蚀的指南和建议第2部分:热浸镀锌
- 核心素养视角下教师专业发展课件
- 企业信用信息公告系统年度报告模板:非私营其他企业
- 施工员钢筋工程知识培训(培训)课件
- 质量管理体系审核中常见的不合格项
- 共用水电费分割单模板
- 《阿房宫赋》全篇覆盖理解性默写
评论
0/150
提交评论