2023届福建省龙岩市上杭县中考数学仿真试卷含解析_第1页
2023届福建省龙岩市上杭县中考数学仿真试卷含解析_第2页
2023届福建省龙岩市上杭县中考数学仿真试卷含解析_第3页
2023届福建省龙岩市上杭县中考数学仿真试卷含解析_第4页
2023届福建省龙岩市上杭县中考数学仿真试卷含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.运用乘法公式计算(3﹣a)(a+3)的结果是()A.a2﹣6a+9 B.a2﹣9 C.9﹣a2 D.a2﹣3a+92.已知a<1,点A(x1,﹣2)、B(x2,4)、C(x3,5)为反比例函数图象上的三点,则下列结论正确的是()A.x1>x2>x3 B.x1>x3>x2 C.x3>x1>x2 D.x2>x3>x13.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是()A.﹣2 B. C.2 D.44.人的头发直径约为0.00007m,这个数据用科学记数法表示()A.0.7×10﹣4B.7×10﹣5C.0.7×104D.7×1055.在1-7月份,某种水果的每斤进价与出售价的信息如图所示,则出售该种水果每斤利润最大的月份是()A.3月份 B.4月份 C.5月份 D.6月份6.若一组数据2,3,4,5,x的平均数与中位数相等,则实数x的值不可能是()A.6 B.3.5 C.2.5 D.17.在同一平面直角坐标系中,函数y=x+k与(k为常数,k≠0)的图象大致是()A. B.C. D.8.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()A. B. C. D.9.如图,∠ACB=90°,D为AB的中点,连接DC并延长到E,使CE=CD,过点B作BF∥DE,与AE的延长线交于点F,若AB=6,则BF的长为()A.6 B.7 C.8 D.1010.数据3、6、7、1、7、2、9的中位数和众数分别是()A.1和7 B.1和9 C.6和7 D.6和911.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是()A.k>0,且b>0 B.k<0,且b>0 C.k>0,且b<0 D.k<0,且b<012.如图,直线a∥b,点A在直线b上,∠BAC=100°,∠BAC的两边与直线a分别交于B、C两点,若∠2=32°,则∠1的大小为()A.32° B.42° C.46° D.48°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在菱形纸片中,,,将菱形纸片翻折,使点落在的中点处,折痕为,点,分别在边,上,则的值为________.14.计算:2(a-b)+3b=___________.15.如图,直线y1=mx经过P(2,1)和Q(-4,-2)两点,且与直线y2=kx+b交于点P,则不等式kx+b>mx>-2的解集为_________________.16.在△ABC中,∠BAC=45°,∠ACB=75°,分别以A、C为圆心,以大于AC的长为半径画弧,两弧交于F、G作直线FG,分别交AB,AC于点D、E,若AC的长为4,则BC的长为_____.17.分解因式:x2﹣4=_____.18.64的立方根是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)太原市志愿者服务平台旨在弘扬“奉献、关爱、互助、进步”的志愿服务精神,培育志思服务文化,推动太原市志愿服务的制度化、常态化,弘扬社会正能量,截止到2018年5月9日16:00,在该平台注册的志愿组织数达2678个,志愿者人数达247951人,组织志愿活动19748次,累计志愿服务时间3889241小时,学校为了解共青团员志愿服务情况,调查小组根据平台数据进行了抽样问卷调查,过程如下:(1)收集、整理数据:从九年级随机抽取40名共青团员,将其志愿服务时间按如下方式分组(A:0~5小时;B:5~10小时;C:10~15小时;D:15~20小时;E:20~25小时;F:25~30小时,注:每组含最小值,不含最大值)得到这40名志愿者服务时间如下:BDEACEDBFCDDDBECDEEFAFFADCDBDFCFDECEEECE并将上述数据整理在如下的频数分布表中,请你补充其中的数据:志愿服务时间ABCDEF频数34107(2)描述数据:根据上面的频数分布表,小明绘制了如下的频数直方图(图1),请将空缺的部分补充完整;(3)分析数据:①调查小组从八年级共青团员中随机抽取40名,将他们的志愿服务时间按(1)题的方式整理后,画出如图2的扇形统计图.请你对比八九年级的统计图,写出一个结论;②校团委计划组织志愿服务时间不足10小时的团员参加义务劳动,根据上述信息估计九年级200名团员中参加此次义务劳动的人数约为人;(4)问题解决:校团委计划组织中考志愿服务活动,共甲、乙、丙三个服务点,八年级的小颖和小文任意选择一个服务点参与志服务,求两人恰好选在同一个服务点的概率.20.(6分)计算:.21.(6分)如图,现有一块钢板余料,它是矩形缺了一角,.王师傅准备从这块余料中裁出一个矩形(为线段上一动点).设,矩形的面积为.(1)求与之间的函数关系式,并注明的取值范围;(2)为何值时,取最大值?最大值是多少?22.(8分)计算:2sin60°﹣(π﹣2)0+(__)-1+|1﹣|.23.(8分)如图,为了测量山顶铁塔AE的高,小明在27m高的楼CD底部D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角36°52′.已知山高BE为56m,楼的底部D与山脚在同一水平线上,求该铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)24.(10分)如图,一次函数y=kx+b的图象分别与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y=的表达式;(2)已知点C(0,8),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M的坐标.25.(10分)如图,某人站在楼顶观测对面的笔直的旗杆AB,已知观测点C到旗杆的距离CE=8m,测得旗杆的顶部A的仰角∠ECA=30°,旗杆底部B的俯角∠ECB=45°,求旗杆AB的髙.26.(12分)如图所示,AB是⊙O的一条弦,OD⊥AB,垂足为C,交⊙O于点D,点E在⊙O上.若∠AOD=52°,求∠DEB的度数;若OC=3,OA=5,求AB的长.27.(12分)阅读下列材料,解答下列问题:材料1.把一个多项式化成几个整式的积的形式,这种变形叫做因式分解,也叫分解因式.如果把整式的乘法看成一个变形过程,那么多项式的因式分解就是它的逆过程.公式法(平方差公式、完全平方公式)是因式分解的一种基本方法.如对于二次三项式a2+2ab+b2,可以逆用乘法公式将它分解成(a+b)2的形式,我们称a2+2ab+b2为完全平方式.但是对于一般的二次三项式,就不能直接应用完全平方了,我们可以在二次三项式中先加上一项,使其配成完全平方式,再减去这项,使整个式子的值不变,于是有:x2+2ax﹣3a2=x2+2ax+a2﹣a2﹣3a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a)材料2.因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2.上述解题用到的是“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把c2﹣6c+8分解因式;(2)结合材料1和材料2完成下面小题:①分解因式:(a﹣b)2+2(a﹣b)+1;②分解因式:(m+n)(m+n﹣4)+3.

参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】

根据平方差公式计算可得.【详解】解:(3﹣a)(a+3)=32﹣a2=9﹣a2,故选C.【点睛】本题主要考查平方差公式,解题的关键是应用平方差公式计算时,应注意以下几个问题:①左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;②右边是相同项的平方减去相反项的平方.2、B【解析】

根据的图象上的三点,把三点代入可以得到x1=﹣,x1=,x3=,在根据a的大小即可解题【详解】解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数图象上的三点,∴x1=﹣,x1=,x3=,∵a<1,∴a﹣1<0,∴x1>x3>x1.故选B.【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断3、C【解析】分析:将x=-2代入方程即可求出a的值.详解:将x=-2代入可得:4a-2a-4=0,解得:a=2,故选C.点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.4、B【解析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00007m,这个数据用科学记数法表示7×10﹣1.故选:B.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、B【解析】

解:各月每斤利润:3月:7.5-4.5=3元,4月:6-2.5=3.5元,5月:4.5-2=2.5元,6月:3-1.5=1.5元,所以,4月利润最大,故选B.6、C【解析】

因为中位数的值与大小排列顺序有关,而此题中x的大小位置未定,故应该分类讨论x所处的所有位置情况:从小到大(或从大到小)排列在中间;结尾;开始的位置.【详解】(1)将这组数据从小到大的顺序排列为2,3,4,5,x,

处于中间位置的数是4,

∴中位数是4,

平均数为(2+3+4+5+x)÷5,

∴4=(2+3+4+5+x)÷5,

解得x=6;符合排列顺序;

(2)将这组数据从小到大的顺序排列后2,3,4,x,5,

中位数是4,

此时平均数是(2+3+4+5+x)÷5=4,

解得x=6,不符合排列顺序;

(3)将这组数据从小到大的顺序排列后2,3,x,4,5,

中位数是x,

平均数(2+3+4+5+x)÷5=x,

解得x=3.5,符合排列顺序;

(4)将这组数据从小到大的顺序排列后2,x,3,4,5,

中位数是3,

平均数(2+3+4+5+x)÷5=3,

解得x=1,不符合排列顺序;

(5)将这组数据从小到大的顺序排列后x,2,3,4,5,

中位数是3,

平均数(2+3+4+5+x)÷5=3,

解得x=1,符合排列顺序;

∴x的值为6、3.5或1.

故选C.【点睛】考查了确定一组数据的中位数,涉及到分类讨论思想,较难,要明确中位数的值与大小排列顺序有关,一些学生往往对这个概念掌握不清楚,计算方法不明确而解答不完整.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.7、B【解析】

选项A中,由一次函数y=x+k的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A错误;选项B中,由一次函数y=x+k的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B正确;由一次函数y=x+k的图象知,函数图象从左到右上升,所以选项C、D错误.故选B.8、C【解析】试题分析:从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.选项C左视图与俯视图都是,故选C.9、C【解析】∵∠ACB=90°,D为AB的中点,AB=6,∴CD=AB=1.又CE=CD,∴CE=1,∴ED=CE+CD=2.又∵BF∥DE,点D是AB的中点,∴ED是△AFB的中位线,∴BF=2ED=3.故选C.10、C【解析】

如果一组数据有奇数个,那么把这组数据从小到大排列后,排在中间位置的数是这组数据的中位数;如果一组数据有偶数个,那么把这组数据从小到大排列后,排在中间位置的两个数的平均数是这组数据的中位数.一组数据中出现次数最多的数据叫做众数.【详解】解:∵7出现了2次,出现的次数最多,∴众数是7;∵从小到大排列后是:1,2,3,6,7,7,9,排在中间的数是6,∴中位数是6故选C.【点睛】本题考查了中位数和众数的求法,解答本题的关键是熟练掌握中位数和众数的定义.11、B【解析】试题分析:∵一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,∴k<0,b>0,故选B.考点:一次函数的性质和图象12、D【解析】

根据平行线的性质与对顶角的性质求解即可.【详解】∵a∥b,∴∠BCA=∠2,∵∠BAC=100°,∠2=32°∴∠CBA=180°-∠BAC-∠BCA=180°-100°-32°=48°.∴∠1=∠CBA=48°.故答案选D.【点睛】本题考查了平行线的性质,解题的关键是熟练的掌握平行线的性质与对顶角的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、【解析】

过点作,交延长线于,连接,交于,根据折叠的性质可得,,根据同角的余角相等可得,可得,由平行线的性质可得,根据的三角函数值可求出、的长,根据为中点即可求出的长,根据余弦的定义的值即可得答案.【详解】过点作,交延长线于,连接,交于,∵四边形是菱形,∴,∵将菱形纸片翻折,使点落在的中点处,折痕为,∴,,∵,,∴,∴,∵,∴,∴,∵,,∴,∴,,∵为中点,∴,∴,∴,∴.故答案为【点睛】本题考查了折叠的性质、菱形的性质及三角函数的定义,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,熟练掌握三角函数的定义并熟记特殊角的三角函数值是解题关键.14、2a+b.【解析】

先去括号,再合并同类项即可得出答案.【详解】原式=2a-2b+3b=2a+b.故答案为:2a+b.15、-4<x<1【解析】将P(1,1)代入解析式y1=mx,先求出m的值为,将Q点纵坐标y=1代入解析式y=x,求出y1=mx的横坐标x=-4,即可由图直接求出不等式kx+b>mx>-1的解集为y1>y1>-1时,x的取值范围为-4<x<1.

故答案为-4<x<1.

点睛:本题考查了一次函数与一元一次不等式,求出函数图象的交点坐标及函数与x轴的交点坐标是解题的关键.16、【解析】

连接CD在根据垂直平分线的性质可得到△ADC为等腰直角三角形,结合已知的即可得到∠BCD的大小,然后就可以解答出此题【详解】解:连接CD,∵DE垂直平分AC,∴AD=CD,∴∠DCA=∠BAC=45°,∴△ADC是等腰直角三角形,∴,∠ADC=90°,∴∠BDC=90°,∵∠ACB=75°,∴∠BCD=30°,∴BC=,故答案为.【点睛】此题主要考查垂直平分线的性质,解题关键在于连接CD利用垂直平分线的性质证明△ADC为等腰直角三角形17、(x+2)(x﹣2)【解析】【分析】直接利用平方差公式进行因式分解即可.【详解】x2﹣4=x2-22=(x+2)(x﹣2),故答案为:(x+2)(x﹣2).【点睛】本题考查了平方差公式因式分解.能用平方差公式进行因式分解的式子的特点是:两项平方项,符号相反.18、4.【解析】

根据立方根的定义即可求解.【详解】∵43=64,∴64的立方根是4故答案为4【点睛】此题主要考查立方根的定义,解题的关键是熟知立方根的定义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)7,9;(2)见解析;(3)①在15~20小时的人数最多;②35;(4).【解析】

(1)观察统计图即可得解;(2)根据题意作图;(3)①根据两个统计图解答即可;②根据图1先算出不足10小时的概率再乘以200人即可;(4)根据题意画出树状图即可解答.【详解】解:(1)C的频数为7,E的频数为9;故答案为7,9;(2)补全频数直方图为:(3)①八九年级共青团员志愿服务时间在15~20小时的人数最多;②200×=35,所以估计九年级200名团员中参加此次义务劳动的人数约为35人;故答案为35;(4)画树状图为:共有9种等可能的结果数,其中两人恰好选在同一个服务点的结果数为3,所以两人恰好选在同一个服务点的概率==.【点睛】本题考查了条形统计图与扇形统计图与树状图法,解题的关键是熟练的掌握条形统计图与扇形统计图与树状图法.20、.【解析】

利用特殊角的三角函数值以及负指数幂的性质和绝对值的性质化简即可得出答案.【详解】解:原式==.故答案为.【点睛】本题考查实数运算,特殊角的三角函数值,负整数指数幂,正确化简各数是解题关键.21、(1);(1)时,取最大值,为.【解析】

(1)分别延长DE,FP,与BC的延长线相交于G,H,由AF=x知CH=x-4,根据,即可得z=,利用矩形的面积公式即可得出解析式;

(1)将(1)中所得解析式配方成顶点式,利用二次函数的性质解答可得.【详解】解:(1)分别延长DE,FP,与BC的延长线相交于G,H,

∵AF=x,

∴CH=x-4,

设AQ=z,PH=BQ=6-z,

∵PH∥EG,

∴,即,

化简得z=,

∴y=•x=-x1+x(4≤x≤10);

(1)y=-x1+x=-(x-)1+,

当x=dm时,y取最大值,最大值是dm1.【点睛】本题考查了二次函数的应用,解题的关键是根据相似三角形的性质得出矩形另一边AQ的长及二次函数的性质.22、2+1【解析】

根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质分别化简各项后,再根据实数的运算法则计算即可求解.【详解】原式=-1+3+=-1+3+=2+1.【点睛】本题主要考查了实数运算,根据特殊角的三角函数值、零指数幂的性质、负指数幂的性质以及绝对值的性质正确化简各数是解题关键.23、52【解析】

根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.【详解】如图,过点C作CF⊥AB于点F.设塔高AE=x,由题意得,EF=BE−CD=56−27=29m,AF=AE+EF=(x+29)m,在Rt△AFC中,∠ACF=36°52′,AF=(x+29)m,则,在Rt△ABD中,∠ADB=45°,AB=x+56,则BD=AB=x+56,∵CF=BD,∴,解得:x=52,答:该铁塔的高AE为52米.【点睛】本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,注意利用方程思想求解,难度一般.24、(1),y=2x﹣1;(2).【解析】

(1)利用待定系数法即可解答;

(2)作MD⊥y轴,交y轴于点D,设点M的坐标为(x,2x-1),根据MB=MC,得到CD=BD,再列方程可求得x的值,得到点M的坐标【详解】解:(1)把点A(4,3)代入函数得:a=3×4=12,∴.∵A(4,3)∴OA=1,∵OA=OB,∴OB=1,∴点B的坐标为(0,﹣1)把B(0,﹣1),A(4,3)代入y=kx+b得:∴y=2x﹣1.(2)作MD⊥y轴于点D.∵点M在一次函数y=2x﹣1上,∴设点M的坐标为(x,2x﹣1)则点D(0,2x-1)∵MB=MC,∴CD=BD∴8-(2x-1)=2x-1+1解得:x=∴2x﹣1=,∴点M的坐标为.【点睛】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论