2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年河南省洛阳市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.三角函数y=sinx2的最小正周期是()A.πB.0.5πC.2πD.4π

2.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定

3.如图所示,一个空间几何体的正视图和侧视图都是全等的等腰三角形,俯视图是一个圆,那么这个几何体是()A.正方体B.圆锥C.圆柱D.半球

4.设集合A={1,3,5,7},B={x|2≤x≤5},则A∩B=()A.{1,3}B.{3,5}C.{5,7}D.{1,7}

5.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}

6.已知全集U={0,1,2,3,4},集合A={1,2,3},B={2,4},则为()A.{1,2,4}B.{2,3,4}C.{0,2,4}D.{0,2,3,4}

7.若a>b.则下列各式正确的是A.-a>-b

B.C.D.

8.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

9.A.-1B.-4C.4D.2

10.函数的定义域为()A.(0,1]B.(0,+∞)C.[1,+∞)D.(—∞,1]

11.A.B.C.D.

12.若将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期后,所得图象对应的函数为()A.y=2sin(2x+π/4)

B.y=2sin(2x+π/3)

C.3;=2sin(2x-π/4)

D.3;=2sin(2x-π/3)

13.若logmn=-1,则m+3n的最小值是()A.

B.

C.2

D.5/2

14.命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是()A.f(x)是偶函数,则f(-x)是偶函数

B.若f(x)不是奇函数,则f(-x)不是奇函数

C.若f(-x)是奇函数,则f(x)是奇函数

D.若f(-x)不是奇函数,则f(x)不是奇函数

15.已知的值()A.

B.

C.

D.

16.A.1B.2C.3D.4

17.随着互联网的普及,网上购物已经逐渐成为消费时尚,为了解消费者对网上购物的满意情况,某公司随机对4500名网上购物消费者进行了调查(每名消费者限选一种情况回答),统计结果如表:根据表中数据,估计在网上购物的消费者群体中对网上购物“比较满意”或“满意”的概率是()A.7/15B.2/5C.11/15D.13/15

18.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角

19.为了了解全校240名学生的身高情况,从中抽取240名学生进行测量,下列说法正确的是()A.总体是240B.个体是每-个学生C.样本是40名学生D.样本容量是40

20.A.3B.8C.1/2D.4

21.椭圆x2/2+y2=1的焦距为()A.1

B.2

C.3

D.

22.若事件A与事件ā互为对立事件,则P(A)+P(ā)等于()A.1/4B.1/3C.1/2D.1

二、填空题(10题)23.10lg2=

24.

25.

26.在△ABC中,若acosA=bcosB,则△ABC是

三角形。

27.

28.某机电班共有50名学生,任选一人是男生的概率为0.4,则这个班的男生共有

名。

29.1+3+5+…+(2n-b)=_____.

30.

31.函数y=3sin(2x+1)的最小正周期为

32.

三、计算题(10题)33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

36.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

37.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

38.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

39.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

40.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

41.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

42.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(10题)43.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。

44.求证

45.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

46.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

47.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

48.解关于x的不等式

49.以点(0,3)为顶点,以y轴为对称轴的拋物线的准线与双曲线3x2-y2+12=0的一条准线重合,求抛物线的方程。

50.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

51.证明上是增函数

52.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

五、解答题(10题)53.

54.已知椭圆x2/a2+y2/b2=1(a>b>0)的离心率为,右焦点为(,0),斜率为1的直线L与椭圆G交于A,B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(1)求椭圆G的方程;(2)求△PAB的面积.

55.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

56.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E,F,G分别是BC,DC,SC的中点,求证:(1)直线EG//平面BDD1B1;(2)平面EFG//平面BDD1B1

57.已知函数(1)求f(x)的最小正周期及其最大值;(2)求f(x)的单调递增区间.

58.

59.己知sin(θ+α)=sin(θ+β),求证:

60.在直角梯形ABCD中,AB//DC,AB丄BC,且AB=4,BC=CD=2.点M为线段AB上的一动点,过点M作直线a丄AB.令AM=x,记梯形位于直线a左侧部分的面积S=f(x).(1)求函数f(x)的解析式;(2)作出函数f(x)的图象.

61.

62.

六、单选题(0题)63.已知向量a=(l,-l),6=(2,x).若A×b=1,则x=()A.-1B.-1/2C.1/2D.1

参考答案

1.A

2.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。

3.B空间几何体的三视图.由正视图可排除选项A,C,D,

4.B集合的运算.由A={1,3,5,7},B={x|2≤x≤5},得A∩B={3,5}

5.D一元二次不等式方程的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

6.C

7.C

8.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

9.C

10.A

11.A

12.D三角函数图像性质.函数y=2sin(2x+π/6)的周期为π,将函数:y=2sin(2x+π/6)的图象向右平移1/4个周期即π/4个单位,所得函数为y=2sin[2(x-π/4)+π/6]=2sin(2x-π/3)

13.B对数性质及基本不等式求最值.由㏒mn=-1,得m-1==n,则mn=1.由于m>0,n>0,∴m+3n≥2.

14.B四种命题的定义.否命题是既否定题设又否定结论.

15.A

16.C

17.C古典概型的概率公式.由题意,n=4500-200-2100-1000=1200.所以对网上购物“比较满意”或“满意”的人数为1200+2100=3300,由古典概型概率公式可得对网上购物“比较满意”或“满意”的概率为3300/4500=11/15.

18.D

19.D确定总体.总体是240名学生的身高情况,个体是每一个学生的身高,样本是40名学生的身髙,样本容量是40.

20.A

21.B椭圆的定义.a2=1,b2=1,

22.D

23.lg102410lg2=lg1024

24.2/5

25.-1

26.等腰或者直角三角形,

27.-16

28.20男生人数为0.4×50=20人

29.n2,

30.5n-10

31.

32.1-π/4

33.

34.

35.

36.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

37.

38.

39.

40.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

41.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

42.

43.

44.

45.由已知得:由上可解得

46.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

47.

48.

49.由题意可设所求抛物线的方程为准线方程为则y=-3代入得:p=12所求抛物线方程为x2=24(y-3)

50.

51.证明:任取且x1<x2∴即∴在是增函数

52.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论