2023年四川省乐山市普通高校对口单招数学自考真题(含答案)_第1页
2023年四川省乐山市普通高校对口单招数学自考真题(含答案)_第2页
2023年四川省乐山市普通高校对口单招数学自考真题(含答案)_第3页
2023年四川省乐山市普通高校对口单招数学自考真题(含答案)_第4页
2023年四川省乐山市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年四川省乐山市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(22题)1.以点(2,0)为圆心,4为半径的圆的方程为()A.(x-2)2+y2=16

B.(x-2)2+y2=4

C.(x+2)2+y2=46

D.(x+2)2+y2=4

2.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.36

3.圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1

B.2

C.

D.

4.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a

5.已知向量a=(l,-l),6=(2,x).若A×b=1,则x=()A.-1B.-1/2C.1/2D.1

6.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3

7.某高职院校为提高办学质量,建设同时具备理论教学和实践教学能力的“双师型”教师队伍,现决定从3名男教师和3名女教师中任选2人一同到某企业实训,则选中的2人都是男教师的概率为()A.

B.

C.

D.

8.下列表示同一函数的是()A.f(x)=x2/x+1与f(x)=x—1

B.f(x)=x0(x≠0)与f(x)=1

C.

D.f(x)=2x+l与f(t)=2t+1

9.展开式中的常数项是()A.-20B.-15C.20D.15

10.已知直线L过点(0,7),且与直线y=-4x+2平行,则直线L的方程为()A.y=-4x-7B.y=4x—7C.y=-4x+7D.y=4x+7

11.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2

12.“对任意X∈R,都有x2≥0”的否定为()A.存在x0∈R,使得x02<0

B.对任意x∈R,都有x2<0

C.存在x0∈R,使得x02≥0

D.不存在x∈R,使得x2<0

13.已知向量a(3,-1),b(1,-2),则他们的夹角是()A.

B.

C.

D.

14.直线2x-y+7=0与圆(x-b2)+(y-b2)=20的位置关系是()A.相离B.相交但不过圆心C.相交且过圆心D.相切

15.设集合U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则Cu(A∪B)=()A.{2,6}B.{3,6}C.{1,3,4,5}D.{1,2,4,6}

16.已知集合A={x|x>2},B={x|1<x<3},则A∩B=()A.{x|x>2}B.{x|x>1}C.{x|2<x<3}D.{x|1<x<3}

17.A.一B.二C.三D.四

18.A.3B.4C.5D.6

19.已知a<0,0<b<1,则下列结论正确的是()A.a>ab

B.a>ab2

C.ab<ab2

D.ab>ab2

20.为了得到函数y=sin1/3x的图象,只需把函数y=sinx图象上所有的点的()A.横坐标伸长到原来的3倍,纵坐标不变

B.横坐标缩小到原来的1/3倍,纵坐标不变

C.纵坐标伸长到原来的3倍,横坐标不变

D.纵坐标缩小到原来的1/3倍,横坐标不变

21.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

22.设f(x)是定义在R上的偶函数,当x≤0时,f(x)=2x2-x,则f(-1)=()A.-3B.-1C.1D.3

二、填空题(10题)23.Ig2+lg5=_____.

24.

25.设{an}是公比为q的等比数列,且a2=2,a4=4成等差数列,则q=

26.圆心在直线2x-y-7=0上的圆C与y轴交于两点A(0,-4),B(0,一2),则圆C的方程为___________.

27.lg5/2+2lg2-(1/2)-1=______.

28.如图是一个算法流程图,则输出S的值是____.

29.

30.若集合,则x=_____.

31.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.

32.

三、计算题(10题)33.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

34.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

35.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

36.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

37.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

38.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

39.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

40.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

41.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

42.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

四、简答题(10题)43.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程

44.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

45.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。

46.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.

47.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.

48.设拋物线y2=4x与直线y=2x+b相交A,B于两点,弦AB长,求b的值

49.解关于x的不等式

50.已知求tan(a-2b)的值

51.求经过点P(2,-3)且横纵截距相等的直线方程

52.已知a是第二象限内的角,简化

五、解答题(10题)53.已知数列{an}是公差不为0的等差数列a1=2,且a2,a3,a4+1成等比数列.(1)求数列{an}的通项公式;(2)设bn=2/n(an+2),求数列{bn}的前n项和Sn.

54.已知数列{an}是首项和公差相等的等差数列,其前n项和为Sn,且S10=55.(1)求an和Sn(2)设=bn=1/Sn,数列{bn}的前n项和为T=n,求Tn的取值范围.

55.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.

56.

57.已知递增等比数列{an}满足:a2+a3+a4=14,且a3+1是a2,a4的等差中项.(1)求数列{an}的通项公式;(2)若数列{an}的前n项和为Sn,求使Sn<63成立的正整数n的最大值.

58.等差数列{an}中,a7=4,a19=2a9.(1)求{an}的通项公式;(2)设bn=1/nan求数列{bn}的前n项和Sn.

59.

60.

61.如图,一辆汽车在一条水平的公路上向正西行驶,在A处时测得公路北侧一山顶D在西偏北30°的方向上,行驶600m后到达B处,测得此山顶在西偏北75°的方向上,仰角为30°,求此山的高度CD。

62.A.90B.100C.145D.190

六、单选题(0题)63.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4

参考答案

1.A圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)2+(y-y0)2=r2.

2.B

3.C点到直线的距离公式.圆(x+1)2+y2=2的圆心坐标为(-1,0),由y=x+3得x-y+3=0,则圆心到直线的距离d=

4.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

5.D向量的线性运算.由题得A×b=1×2+(-1).x=2-x=1.所以x=1,

6.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3

7.C

8.D函数的定义域与对应关系.A、B中定义域不同;C中对应关系不同;D表示同一函数

9.D由题意可得,由于展开式的通项公式为,令,求得r=1,故展开式的常数项为。

10.C直线的点斜式方程∵直线l与直线y=-4x+2平行,∴直线l的斜率为-4,又直线l过点(0,7),∴直线l的方程为y-7=-4(x-0),即y=-4x+7.

11.D

12.A命题的定义.根据否定命题的定义可知命题的否定为:存在x0∈R使得x02<0,

13.B因为,所以,,因此,由于两向量夹角范围为[0,π],所以夹角为π/4。

14.D由题可知,直线2x-y+7=0到圆(x-b)2+(y-b)2=20的距离等于半径,所以二者相切。

15.A并集,补集的运算∵A∪B={1,3,4,5}...Cu(AUB)={2,6},

16.C集合的运算.由已知条件得,A∩B={x|x>2}∩{x|1<x<3}={x|2<x<3}

17.A

18.B线性回归方程的计算.将(x,y)代入:y=1+bx,得b=4

19.C命题的真假判断与应用.由题意得ab-ab2=ab(1-b)<0,所以ab<ab2

20.A三角函数图像的性质.y=sinx横坐标伸长到原来的3倍,纵坐标不变y=sin1/3x.

21.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

22.D函数奇偶性的应用.f(-1)=2(-1)2-(―1)=3.

23.1.对数的运算.lg2+lg5==lg(2×5)=lgl0=l.

24.16

25.

,由于是等比数列,所以a4=q2a2,得q=。

26.(x-2)2+(y+3)2=5圆的方程.圆心在AB中垂线y=-3上又在2x-y-7=0上,所以C(2,-3),CA=,所以圆C的方程为(x-2)2+(y+3)2=5

27.-1.对数的四则运算.lg5/2+21g2-〔1/2)-1=lg5/2+lg22-2=lg(5/2×4)-2=1-2=-1.

28.25程序框图的运算.经过第一次循环得到的结果为S=1,n=3,过第二次循环得到的结果为S=4,72=5,经过第三次循环得到的结果为S=9,n=7,经过第四次循环得到的结果为s=16,n=9经过第五次循环得到的结果为s=25,n=11,此时不满足判断框中的条件输出s的值为25.故答案为25.

29.π

30.

,AB为A和B的合集,因此有x2=3或x2=x且x不等于1,所以x=

31.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.

32.-2i

33.

34.

35.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

36.

37.

38.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

39.

40.

41.

42.

43.

44.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

45.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=

PD=PC=2

46.(1)∵

∴又∵等差数列∴∴(2)

47.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为

48.由已知得整理得(2x+m)2=4x即∴再根据两点间距离公式得

49.

50.

51.设所求直线方程为y=kx+b由题意可知

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论