




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年内蒙古自治区乌海市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.直线3x+4y=b与圆x2+y2-2x-2y+1=0相切,则b的值是()A.-2或12B.2或-12C.-2或-12D.2或12
2.如图所示的程序框图,当输人x的值为3时,则其输出的结果是()A.-1/2B.1C.4/3D.3/4
3.函数y=1/2x2-lnx的单调递减区间为().A.(-1,1]B.(0,1]C.[1,+∞)D.(0,+∞)
4.A.-1B.-4C.4D.2
5.若集合A={1,2},集合B={1},则集合A与集合B的关系是()A.
B.A=B
C.B∈A
D.
6.从1、2、3、4、5五个数字中任取1数,则抽中偶数的概率是()A.0B.1/5C.3/5D.2/5
7.A.负数B.正数C.非负数D.非正数
8.已知集合A={1,2,3,4,5,6,7},B={3,4,5},那么=()A.{6,7}B.{1,2,6,7}C.{3,4,5}D.{1,2}
9.下列双曲线中,渐近线方程为y=±2x的是()A.x2-y2/4=1
B.x2/4-y2=1
C.x2-y2/2=1
D.x2/2-y2=1
10.在△ABC中,“x2
=1”是“x=1”的()
A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件
11.A.B.(2,-1)
C.D.
12.若函数f(x-)=x2+,则f(x+1)等于()A.(x+1)2+
B.(x-)2+
C.(x+1)2+2
D.(x+1)2+1
13.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6
14.为A.23B.24C.25D.26
15.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角
16.直线l:x-2y+2=0过椭圆的左焦点F1和上顶点B,该椭圆的离心率为()A.1/5
B.2/5
C.
D.
17.不等式-2x22+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}
18.若f(x)=ax2+bx(ab≠0),且f(2)=f(3),则f(5)等于()A.1B.-1C.0D.2
19.把6本不同的书分给李明和张强两人,每人3本,不同分法的种类数为()A.
B.
C.
D.
20.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}
二、填空题(10题)21.二项式的展开式中常数项等于_____.
22.在△ABC中,C=60°,AB=,BC=,那么A=____.
23.按如图所示的流程图运算,则输出的S=_____.
24.
25.函数f(x)=sin2x-cos2x的最小正周期是_____.
26.数列{an}满足an+1=1/1-an,a2=2,则a1=_____.
27.若长方体的长、宽、高分别为1,2,3,则其对角线长为
。
28.设A(2,-4),B(0,4),则线段AB的中点坐标为
。
29.若f(x)=2x3+1,则f(1)=
。
30.
三、计算题(5题)31.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
32.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
33.解不等式4<|1-3x|<7
34.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
35.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
四、简答题(10题)36.化简
37.求经过点P(2,-3)且横纵截距相等的直线方程
38.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积
39.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。
40.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.
41.设等差数列的前n项数和为Sn,已知的通项公式及它的前n项和Tn.
42.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
43.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值
44.求到两定点A(-2,0)(1,0)的距离比等于2的点的轨迹方程
45.证明:函数是奇函数
五、证明题(10题)46.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
47.△ABC的三边分别为a,b,c,为且,求证∠C=
48.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
49.若x∈(0,1),求证:log3X3<log3X<X3.
50.己知sin(θ+α)=sin(θ+β),求证:
51.
52.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
53.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
54.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
55.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
六、综合题(2题)56.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)
57.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
参考答案
1.D圆的切线方程的性质.圆方程可化为C(x-l)2+(y-1)2=1,∴该圆是以(1,1)为圆心,以1为半径的圆,∵直线3x+4y=
2.B程序框图的运算.当输入的值为3时,第一次循环时,x=3-3=0,所以x=0≤0成立,所以y=0.50=1.输出:y=1.故答案为1.
3.B函数的单调性.∵y=1/2x2-Inx,∴y=x-1/x,由:y'<0,解得-1≤x≤1,又x>0,∴0<x≤1.
4.C
5.A由于B中的元素也存在于A,因此B包含于A。
6.D由于在5个数中只有两个偶数,因此抽中偶数的概率为2/5。
7.C
8.B由题可知AB={3,4,5},所以其补集为{1,2,6,7}。
9.A双曲线的渐近线方程.由双曲线渐近线方程的求法知,双曲线x2-y2/4=1的渐近线方程为y=±2x
10.Bx2=1不能得到x=1,但是反之成立,所以是必要不充分条件。
11.A
12.C由题可知,f(0)=2=f(-1+1),因此x=-1时,函数值为2,所以正确答案为C。
13.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。
14.A
15.D
16.D直线与椭圆的性质,离心率公式.直线l:x-2y+2=0与x轴的交点F1(-2,0),与y轴的交点B(0,1),由于椭圆的左焦点为F1,上顶点为B,则c=2,b=1,∴a=
17.D不等式的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.
18.C
19.D
20.A交集
21.15,由二项展开式的通项可得,令12-3r=0,得r=4,所以常数项为。
22.45°.解三角形的正弦定理.由正弦定理知BC/sinA=AB/sinC,即/sinA=/sin60°所以sinA=/2,又由题知BC<AB,得A<C,所以A=45°.
23.20流程图的运算.由题意可知第一次a=5,s=1,满足a≥4,S=1×5=5,a=a-1=4,当a=4时满足a≥4,输出S=20.综上所述,答案20.
24.{x|0<x<1/3}
25.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
26.1/2数列的性质.a2=1/1-a1=2,所以a1=1/2
27.
,
28.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。
29.3f(1)=2+1=3.
30.-7/25
31.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
32.
33.
34.
35.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
36.1+2cos2a-cos2=1+2cos2a-(cos2a-sin2a)=1+cos2a+sin2a=2
37.设所求直线方程为y=kx+b由题意可知-3=2k+b,b=解得,时,b=0或k=-1时,b=-1∴所求直线为
38.
39.x-7y+19=0或7x+y-17=0
40.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)
∴数列为首项b1=32,q=16的等比数列
41.(1)∵
∴又∵等差数列∴∴(2)
42.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
43.
44.
45.证明:∵∴则,此函数为奇函数
46.
47.
48.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
49.
50.
51.
52.
53.
54.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
55.
∴PD//平面ACE.
56.
5
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 物流公司实习合同范本
- 门店物品转让合同范本
- 机械租领合同范本
- 建房出租合同范本
- 美陈设计合同范本
- 工业车辆销售合同范本
- 后勤工作思路怎么写2025(5篇)
- 生态保护修复资金申请关键因素评估报告(2025版)
- 2025年高中字音字形题目及答案
- 古筝演奏题目及答案
- GB/T 22838.5-2024卷烟和滤棒物理性能的测定第5部分:卷烟吸阻和滤棒压降
- 议论文阅读训练10篇(附答案及解析)
- 《医师资格考试报名资格规定2014版》
- 《市场营销英语》全套教学课件
- JT叔叔医道课1-50集完整稿
- 2025届广东省实验中学数学高一下期末质量检测试题含解析
- 无线传感器网络与物联网通信技术全套教学课件
- 部编版五年级道德与法治上册第3课《主动拒绝烟酒与毒品》精美课件(第3课时)
- 2024年金属钼行业市场趋势分析
- 四年级教材《劳动》课件
- GB/T 18910.4-2024液晶显示器件第4部分:液晶显示模块和屏基本额定值和特性
评论
0/150
提交评论