2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)_第1页
2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)_第2页
2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)_第3页
2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)_第4页
2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年山西省太原市普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.A.B.C.D.

2.的展开式中,常数项是()A.6B.-6C.4D.-4

3.A.B.C.D.

4.已知让点P到椭圆的一个焦点的距离为3,则它到另一个焦点的距离为()A.2B.3C.5D.7

5.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

6.A.B.{-1}

C.{0}

D.{1}

7.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

8.设则f(f(-2))=()A.-1B.1/4C.1/2D.3/2

9.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a

10.已知椭圆的一个焦点为F(0,1),离心率e=1/2,则该椭圆的标准方程为()A.x2/3+y2/4=1

B.x2/4+y2/3=1

C.x2/2+y2=1

D.y2/2+x2=1

11.A.1B.-1C.2D.-2

12.设f(g(π))的值为()A.1B.0C.-1D.π

13.已知A(3,1),B(6,1),C(4,3)D为线段BC的中点,则向量AC与DA的夹角是()A.

B.

C.

D.

14.椭圆的中心在原点,焦距为4,一条准线为x=-4,则该椭圆的方程为()A.x2/16+y2/12=1

B.x2/12+y2/8=1

C.x2/8+y2/4=1

D.x2/12+y2/4=1

15.某品牌的电脑光驱,使用事件在12000h以上损坏的概率是0.2,则三个里最多有一个损坏的概率是()A.0.74B.0.096C.0.008D.0.512

16.A.N为空集

B.C.D.

17.已知等差数列中{an}中,a3=4,a11=16,则a7=()A.18B.8C.10D.12

18.A.负数B.正数C.非负数D.非正数

19.贿圆x2/7+y2/3=1的焦距为()A.4

B.2

C.2

D.2

20.下列各组数中,表示同一函数的是()A.

B.

C.

D.

二、填空题(10题)21.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

22.

23.

24.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.

25.设等差数列{an}的前n项和为Sn,若S8=32,则a2+2a5十a6=_______.

26.已知点A(5,-3)B(1,5),则点P的坐标是_____.

27.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=_______.

28.的值是

29.

30.到x轴的距离等于3的点的轨迹方程是_____.

三、计算题(5题)31.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

32.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

33.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。

34.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。

35.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

四、简答题(10题)36.在ABC中,BC=,AC=3,sinC=2sinA(1)求AB的值(2)求的值

37.拋物线的顶点在原点,焦点为椭圆的左焦点,过点M(-1,-1)引抛物线的弦使M为弦的中点,求弦长

38.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC

39.如图四面体ABCD中,AB丄平面BCD,BD丄CD.求证:(1)平面ABD丄平面ACD;(2)若AB=BC=2BD,求二面角B-AC-D的正弦值.

40.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程

41.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

42.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

43.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

44.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

45.化简a2sin(-1350°)+b2tan405°-(a-b)2cot765°-2abcos(-1080°)

五、证明题(10题)46.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

47.己知sin(θ+α)=sin(θ+β),求证:

48.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

49.若x∈(0,1),求证:log3X3<log3X<X3.

50.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

51.

52.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

53.△ABC的三边分别为a,b,c,为且,求证∠C=

54.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

55.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

六、综合题(2题)56.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

57.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

参考答案

1.D

2.A

3.A

4.D

5.C

6.C

7.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

8.C函数的计算.f(-2)=2-2=1/4>0,则f(f(-2))=f(1/4)=1-=1-1/2=1/2

9.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

10.A椭圆的标准方程.由题意得,椭圆的焦点在y轴上,且c=l,e=c/a=1/2,故a=2,b=则補圆的标准方程为x2/3+y2/4=1

11.A

12.B值的计算.g(π)=0,f(g(π))=f(0)=0

13.C

14.C椭圆的标准方程.椭圆的焦距为4,所以2c=4,c=2因为准线为x=-4,所以椭圆的焦点在x轴上,且-a2/c=-4,所以a2=4c=8,b2=a2-c2=8-4=4,所以椭圆的方程为x2/8+y2/4+=1

15.A

16.D

17.C等差数列的性质∵{an}为等差数列,∴2a7=a3+a11=20,∴a7=10.

18.C

19.A椭圆的定义.因为a2=7,b2=3,所以c2-a2-b2=4,c=2,2c=4.

20.B

21.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

22.{x|1<=x<=2}

23.3/49

24.4、6、8

25.16.等差数列的性质.由S8=32得4(a4+a5)=8,故a2+2a5+a6=2(a4+a5)=16.

26.(2,3),设P(x,y),AP=(x-5,y+3),AB=(-4,8),所以x-5=(-4)*(3/4)=-3;得x=2;y+3=8*(3/4)=6;得y=3;所以P(2,3).

27.-2/3平面向量的线性运算.由题意,得A×b=0.所以x+2(x+1)=0.所以x=-2/3.

28.

29.45

30.y=±3,点到x轴的距离就是其纵坐标,因此轨迹方程为y=±3。

31.

32.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

33.

34.

35.

36.

37.

38.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC

39.

40.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为

41.x-7y+19=0或7x+y-17=0

42.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

43.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

44.

45.原式=

46.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论