浙江省新昌县2022-2023学年九年级数学第一学期期末教学质量检测模拟试题含解析_第1页
浙江省新昌县2022-2023学年九年级数学第一学期期末教学质量检测模拟试题含解析_第2页
浙江省新昌县2022-2023学年九年级数学第一学期期末教学质量检测模拟试题含解析_第3页
浙江省新昌县2022-2023学年九年级数学第一学期期末教学质量检测模拟试题含解析_第4页
浙江省新昌县2022-2023学年九年级数学第一学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)2.如图,在边长为4的菱形ABCD中,∠ABC=120°,对角线AC与BD相交于点O,以点O为圆心的圆与菱形ABCD的四边都相切,则图中阴影区域的面积为()A. B. C. D.3.如图,在平面直角坐标系中,点P在函数y=(x>0)的图象上从左向右运动,PA∥y轴,交函数y=﹣(x>0)的图象于点A,AB∥x轴交PO的延长线于点B,则△PAB的面积()A.逐渐变大 B.逐渐变小 C.等于定值16 D.等于定值244.点C为线段AB的黄金分割点,且AC>BC,下列说法正确的有()①AC=AB,②AC=AB,③AB:AC=AC:BC,④AC≈0.618ABA.1个 B.2个 C.3个 D.4个5.一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A.36πcm2 B.52πcm2 C.72πcm2 D.136πcm26.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,),则点C的坐标为()A.(-,1) B.(-1,) C.(,1) D.(-,-1)7.已知函数的部分图像如图所示,若,则的取值范围是()A. B. C. D.8.抛物线()的部分图象如图所示,与轴的一个交点坐标为,抛物线的对称轴是,下列结论是:①;②;③方程有两个不相等的实数根;④;⑤若点在该抛物线上,则,其中正确的个数有()A.1个 B.2个 C.3个 D.4个9.如图,在矩形ABCD中,AB=4,BC=6,将矩形ABCD绕B逆时针旋转30°后得到矩形GBEF,延长DA交FG于点H,则GH的长为()A.8﹣4 B.﹣4 C.3﹣4 D.6﹣310.点P(6,-8)关于原点的对称点的坐标为()A.(-6,8) B.(–6,-8) C.(8,-6) D.(–8,-6)11.从下列两组卡片中各摸一张,所摸两张卡片上的数字之和为5的概率是()第一组:1,2,3第二组:2,3,4A. B. C. D.12.已知关于x的方程x2﹣2x+3k=0有两个不相等的实数根,则k的取值范围是()A.k< B.k<﹣ C.k<3 D.k>﹣3二、填空题(每题4分,共24分)13.如图,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则___________(填“>”或“<”或“=”)14.一元二次方程配方后得,则的值是__________.15.如图,一段与水平面成30°角的斜坡上有两棵树,两棵树水平距离为,树的高度都是.一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞____________.16.已知,则=____17.PA是⊙O的切线,切点为A,PA=2,∠APO=30°,则阴影部分的面积为_____.18.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是_____三、解答题(共78分)19.(8分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.(1)采用树状图或列表法列出两次摸出小球出现的所有可能结果;(2)求摸出的两个小球号码之和等于4的概率.20.(8分)已知:△ABC内接于⊙O,过点A作直线EF.(1)如图甲,AB为直径,要使EF为⊙O的切线,还需添加的条件是(写出两种情况,不需要证明):①或②;(2)如图乙,AB是非直径的弦,若∠CAF=∠B,求证:EF是⊙O的切线.(3)如图乙,若EF是⊙O的切线,CA平分∠BAF,求证:OC⊥AB.21.(8分)如图,已知是的一条弦,请用尺规作图法找出的中点.(保留作图痕迹,不写作法)22.(10分)网络购物已成为新的消费方式,催生了快递行业的高速发展,某小型的快递公司,今年5月份与7月份完成快递件数分别为5万件和5.832份万件,假定每月投递的快递件数的增长率相同.(1)求该快递公司投递的快递件数的月平均增长率;(2)如果每个快递小哥平均每月最多可投递0.8万件,公司现有8个快递小哥,按此快递增长速度,不增加人手的情况下,能否完成今年9月份的投递任务?23.(10分)已知:如图,在矩形中,点为上一点,连接,过点作于点,与相似吗?请说明理由.24.(10分)如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数的图象上.(1)求反比例函数的表达式;(2)在x轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE,直接写出点E的坐标,并判断点E是否在该反比例函数的图象上,说明理由.25.(12分)计算:26.已知矩形的周长为1.(1)当该矩形的面积为200时,求它的边长;(2)请表示出这个矩形的面积与其一边长的关系,并求出当矩形面积取得最大值时,矩形的边长.

参考答案一、选择题(每题4分,共48分)1、D【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.考点:二次函数的性质.2、C【分析】如图,分别过O作OE⊥AB于E、OF⊥BC于F、OG⊥CD于G、OH⊥DA于H,则.分别求出上式中各量即可得到解答.【详解】如图,过O作OE⊥AB于E,由题意得:∠EOB=∠OAB=-∠ABO=-∠ABC=-=,AB=4∴OB=2,OA=2,OE=,BE=1,∠HOE=-=∴BD=2OB=4,AC=2OA=4,∴∴.故选C.【点睛】本题考查圆的综合应用,在审清题意的基础上把图形分割成几块计算后再综合是解题关键.3、C【分析】根据反比例函数k的几何意义得出S△POC=×2=1,S矩形ACOD=6,即可得出,从而得出,通过证得△POC∽△PBA,得出,即可得出S△PAB=1S△POC=1.【详解】如图,由题意可知S△POC=×2=1,S矩形ACOD=6,∵S△POC=OC•PC,S矩形ACOD=OC•AC,∴,∴,∴,∵AB∥轴,∴△POC∽△PBA,∴,∴S△PAB=1S△POC=1,∴△PAB的面积等于定值1.故选:C.【点睛】本题考查了反比例函数的性质以及矩形的面积的计算,利用相似三角形面积比等于相似比的平方是解决本题的关键.4、C【解析】根据黄金分割的概念和黄金比值进行解答即可得.【详解】∵点C数线段AB的黄金分割点,且AC>BC,∴AC=AB,故①正确;由AC=AB,故②错误;BC:AC=AC:AB,即:AB:AC=AC:BC,③正确;AC≈0.618AB,故④正确,故选C.【点睛】本题考查了黄金分割,理解黄金分割的概念,熟记黄金分割的比为是解题的关键.5、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和.【详解】解:圆锥的全面积=π×42+×2π×4×9=52π(cm2).故选:B.【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.6、A【解析】试题分析:作辅助线构造出全等三角形是解题的关键,也是本题的难点.如图:过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,根据同角的余角相等求出∠OAD=∠COE,再利用“角角边”证明△AOD和△OCE全等,根据全等三角形对应边相等可得OE=AD,CE=OD,然后根据点C在第二象限写出坐标即可.∴点C的坐标为(-,1)故选A.考点:1、全等三角形的判定和性质;2、坐标和图形性质;3、正方形的性质.7、C【分析】根据抛物线的对称性确定抛物线与x轴的另一个交点为(−3,1),然后观察函数图象,找出抛物线在x轴上方的部分所对应的自变量的范围即可.【详解】∵y=ax2+bx+c的对称轴为直线x=−1,与x轴的一个交点为(1,1),∴抛物线与x轴的另一个交点为(−3,1),∴当−3<x<1时,y>1.故选:C.【点睛】此题主要考查二次函数的图像与性质,解题的关键是根据函数对称轴找到抛物线与x轴的交点.8、D【分析】根据二次函数的对称性补全图像,再根据二次函数的性质即可求解.【详解】如图,∵与轴的一个交点坐标为,抛物线的对称轴是,实验求出二次函数与x轴的另一个交点为(-2,0)故可补全图像如下,由图可知a<0,c>0,对称轴x=1,故b>0,∴,①错误,②对称轴x=1,故x=-,∴,正确;③如图,作y=2图像,与函数有两个交点,∴方程有两个不相等的实数根,正确;④∵x=-2时,y=0,即,正确;⑤∵抛物线的对称轴为x=1,故点在该抛物线上,则,正确;故选D【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的对称性.9、A【分析】作辅助线,构建直角△AHM,先由旋转得BG的长,根据旋转角为30°得∠GBA=30°,利用30°角的三角函数可得GM和BM的长,由此得AM和HM的长,相减可得结论.【详解】如图,延长BA交GF于M,由旋转得:∠GBA=30°,∠G=∠BAD=90°,BG=AB=4,∴∠BMG=60°,tan∠30°==,∴,∴GM=,∴BM=,∴AM=﹣4,Rt△HAM中,∠AHM=30°,∴HM=2AM=﹣8,∴GH=GM﹣HM=﹣(﹣8)=8﹣4,故选:A.【点睛】考查了矩形的性质、旋转的性质、特殊角的三角函数及直角三角形30°的性质,解题关键是直角三角形30°所对的直角边等于斜边的一半及特殊角的三角函数值.10、A【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(-x,-y),可以直接选出答案.【详解】解:根据关于原点对称的点的坐标的特点可得:点P(6,-8)关于原点过对称的点的坐标是(-6,8).故选:A.【点睛】本题主要考查了关于原点对称的点的坐标的特点,关键是熟记关于原点对称的点的坐标的特点:它们的坐标符号相反.11、D【分析】根据题意,通过树状图法即可得解.【详解】如下图,画树状图可知,从两组卡片中各摸一张,一共有9种可能性,两张卡片上的数字之和为5的可能性有3种,则P(两张卡片上的数字之和为5),故选:D.【点睛】本题属于概率初步题,熟练掌握树状图法或者列表法是解决本题的关键.12、A【分析】根据方程的系数结合根的判别式△>0,即可得出关于k的一元一次不等式,解之即可得出k的取值范围.【详解】解:∵关于x的方程x2﹣2x+3k=0有两个不相等的实数根,∴△=(﹣2)2﹣4×1×3k>0,解得:k<.故选A.【点睛】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.二、填空题(每题4分,共24分)13、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则∵点P、点Q在反比例函数的图像上,∴,∵四边形OMPA、ONQB是矩形,∴OM=AP,OB=NQ,∵,,∴,∴,∴;故答案为:=.【点睛】本题考查了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.14、1【分析】将原方程进行配方,然后求解即可.【详解】解:∴-m+1=nm+n=1故答案为:1【点睛】本题考查配方法,掌握配方步骤正确计算是本题的解题关键.15、1【分析】依题意可知所求的长度等于AB的长,通过解直角△ABC即可求解.【详解】如图,∵∠BAC=30,∠ACB=90,AC=,∴AB=AC/cos30=(m).故答案是:1.【点睛】本题考查了解直角三角形的应用−坡度坡角问题.应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.16、1【分析】由,得a=3b,进而即可求解.【详解】∵,∴a=3b,∴;故答案为:1.【点睛】本题主要考查比例式的性质,掌握比例式的内项之积等于外项之积,是解题的关键.17、.【分析】连接OA,根据切线的性质求出∠OAP=90°,解直角三角形求出OA和∠AOB,求出△OAP的面积和扇形AOB的面积即可求出答案.【详解】解:连接OA,∵PA是⊙O的切线,∴∠OAP=90°,∵,∴∠AOP=60°,OP=2AO,由勾股定理得:,解得:AO=2,∴阴影部分的面积为,故答案为:.【点睛】本题考查的是切线性质,勾股定理,三角形面积和扇形面积,能够根据切线性质,求出三角形的三边是解题的关键.18、2.【解析】设另一个根为t,根据根与系数的关系得到3+t=4,然后解一次方程即可.【详解】设另一个根为t,根据题意得3+t=4,解得t=2,则方程的另一个根为2.故答案为2.【点睛】本题考查了根与系数的关系:若x2,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x2+x2=-,x2x2=.三、解答题(共78分)19、(1)见解析;(2).【分析】(1)画树状图列举出所有情况;

(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.20、(1)①OA⊥EF;②∠FAC=∠B;(2)见解析;(3)见解析.【分析】(1)添加条件是:①OA⊥EF或∠FAC=∠B根据切线的判定和圆周角定理推出即可.(2)作直径AM,连接CM,推出∠M=∠B=∠EAC,求出∠FAC+∠CAM=90°,根据切线的判定推出即可.(3)由同圆的半径相等得到OA=OB,所以点O在AB的垂直平分线上,根据∠FAC=∠B,∠BAC=∠FAC,等量代换得到∠BAC=∠B,所以点C在AB的垂直平分线上,得到OC垂直平分AB.【详解】(1)①OA⊥EF②∠FAC=∠B,理由是:①∵OA⊥EF,OA是半径,∴EF是⊙O切线,②∵AB是⊙0直径,∴∠C=90°,∴∠B+∠BAC=90°,∵∠FAC=∠B,∴∠BAC+∠FAC=90°,∴OA⊥EF,∵OA是半径,∴EF是⊙O切线,故答案为:OA⊥EF或∠FAC=∠B,(2)作直径AM,连接CM,即∠B=∠M(在同圆或等圆中,同弧所对的圆周角相等),∵∠FAC=∠B,∴∠FAC=∠M,∵AM是⊙O的直径,∴∠ACM=90°,∴∠CAM+∠M=90°,∴∠FAC+∠CAM=90°,∴EF⊥AM,∵OA是半径,∴EF是⊙O的切线.(3)∵OA=OB,∴点O在AB的垂直平分线上,∵∠FAC=∠B,∠BAC=∠FAC,∴∠BAC=∠B,∴点C在AB的垂直平分线上,∴OC垂直平分AB,∴OC⊥AB.【点睛】本题考查了切线的判定,圆周角定理,三角形的内角和定理等知识点,注意:经过半径的外端且垂直于半径的直线是圆的切线,直径所对的圆周角是直角.21、见解析【分析】作线段AB的垂直平分线即可得到AB的中点D.【详解】如图,作线段AB的垂直平分线即可得到AB的中点D.【点睛】此题考查作图能力,作线段的垂直平分线,掌握画图方法是解题的关键.22、(1)该快递公司投递的快递件数的月平均增长率为8%;(2)按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务,见解析【分析】(1)设该快递公司投递的快递件数的月平均增长率为x,根据“5月份快递件数×(1+增长率)2=7月份快递件数”列出关于x的方程,解之可得答案;(2)分别计算出9月份的快递件数和8名快递小哥可投递的总件数,据此可得答案.【详解】(1)设该快递公司投递的快递件数的月平均增长率为x,根据题意,得:,解得:=0.08=8%,=﹣2.08(舍),答:该快递公司投递的快递件数的月平均增长率为8%;(2)9月份的快递件数为(万件),而0.8×8=6.4<6.8,所以按此快递增长速度,不增加人手的情况下,不能完成今年9月份的投递任务.【点睛】本题主要了考查一元二次方程的应用,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.23、相似,见解析【分析】先得出,,再根据两角对应相等两个三角形相似即可判断.【详解】解:相似,理由如下:在矩形中,,∴,∵,∴,∴,∴.【点睛】本题考查矩形的性质、相似三角形的判定等知识,解题的关键是熟练掌握相似三角形的判定定理,属于中考常考题型.24、(1);(2)P(,0);(3)E(,﹣1),在.【分析】(1)将点A(,1)代入,利用待定系数法即可求出反比例函数的表达式;(2)先由射影定理求出BC=3,那么B(,﹣3),计算求出S△AOB=××4=.则S△AOP=S△AOB=.设点P的坐标为(m,0),列出方程求解即可;(3)先解△OAB,得出∠ABO=30°,再根据旋转的性质求出E点坐标为(﹣,﹣1),即可求解.【详解】(1)∵点A(,1)在反比例函数的图象上,∴k=×1=,∴反比例函数的表达式为;(2)∵A(,1),AB⊥x轴于点C,∴OC=,AC=1,由射影定理得=AC•BC,可得BC=3,B(,﹣3),S△AOB=××4=,∴S△AOP=S△AOB=.设点P的坐标为(m,0),∴×|m|×1=,∴|m|=,∵P是x轴的负半轴上的点,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论