柯桥中学2022学年高三第一次数学限时测试_第1页
柯桥中学2022学年高三第一次数学限时测试_第2页
柯桥中学2022学年高三第一次数学限时测试_第3页
柯桥中学2022学年高三第一次数学限时测试_第4页
柯桥中学2022学年高三第一次数学限时测试_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

柯桥中学2022学年高三第一次数学限时测试(满分:150分,时间:120分钟)命题人:王文清徐雅平一.选择题(本大题共10小题,每小题4分,共40分)1.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3} B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3} D.{x|﹣1<x<0或1<x<3}2.已知p:方程x2+ax+b=0有且仅有整数解,q:a,b是整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.下列函数中,与y=x相同的函数是()A. B.y=lg10x C. D.4.已知,则下列不等式一定成立的是()A. B. C.ln(a﹣b)>0 D.3a﹣b<15.已知角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos150°),则α=()A.150° B.135° C.300° D.60°6.若3sinα+cosα=0,则的值为()A. B. C. D.﹣27.设函数f(x)=,则当x>0时,f[f(x)]表达式的展开式中常数项为()A.﹣20 B.20 C.﹣15 D.158.函数y=的部分图象大致为()AB C D9.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种 B.24种 C.36种 D.48种10.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A. B. C. D.二.填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)11.已知函数f(x)=,则f(f(﹣3))=,f(x)的最小值是.12.函数f(x)=1﹣3sin2x的最小正周期为,值域为.13.函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.14.设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则点P的坐标为.15.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=.16.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a0=,a3=.17.设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于.三.解答题(本大题共5小题,共74分)18.(本题满分14分)△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.19.(本题满分15分)从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.20.(本题满分15分)已知命题P:函数f(x)为(0,+∞)上单调减函数,实数m满足不等式f(m+1)<f(3﹣2m).命题Q:当x∈[0,],实数m=sin2x﹣2sinx+1+a.若命题P是命题Q的充分不必要条件,求实数a的取值范围.21.(本题满分15分)已知函数,求函数f(x)的定义域,并讨论它的奇偶性和单调性.22.(本题满分15分)已知函数f(x)=(x+1)lnx﹣a(x﹣1).(Ⅰ)当a=4时,求曲线y=f(x)在(1,f(1))处的切线方程;(Ⅱ)若当x∈(1,+∞)时,f(x)>0,求a的取值范围.

柯桥中学2022学年高三第一次数学限时测试参考答案与试题解析一.选择题(共8小题)1.已知集合A={x|x2﹣2x﹣3<0},,则A∩B=()A.{x|1<x<3} B.{x|﹣1<x<3}C.{x|﹣1<x<0或0<x<3} D.{x|﹣1<x<0或1<x<3}【解答】解:由A={x|﹣1<x<3},B={x|x<0,或x>1},故A∩B={x|﹣1<x<0,或1<x<3}.故选D.【点评】本题考查了集合的交集的运算,属于基础题.2.已知p:方程x2+ax+b=0有且仅有整数解,q:a,b是整数,则p是q的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件【解答】解:a,b是整数时,x2+ax+b=0不一定有整数解,即命题p⇒命题q为假命题,若x2+ax+b=0有且仅有整数解,由韦达定理(一元二次方程根与系数的关系)我们易判断a,b是整数.即命题p⇒命题q为真命题,故p是q的充分不必要条件故选:A.【点评】本题考查的知识点是充要条件的判断,充要条件判断的方法一般为:先判断p⇒q与q⇒p的真假,再根据充要条件的定义给出结论.3.下列函数中,与y=x相同的函数是()A. B.y=lg10x C. D.【解答】解:对于A,y==|x|(x∈R),与函数y=x的对应法则不同,不是同一函数;对于B,y=lg10x=x(x∈R),与函数y=x的定义域相同,对应法则也相同,是同一函数;对于C,y==x(x≠0),与函数y=x的定义域不同,不是同一函数;对于D,y=+1=x(x≥1),与函数y=x的定义域不同,不是同一函数.故选:B.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题.4.已知,则下列不等式一定成立的是()A. B. C.ln(a﹣b)>0 D.3a﹣b<1【解答】解:∵,∴a>b>0,∴<,<,ln(a﹣b)与0的大小关系不确定,3a﹣b>1.因此只有A正确.故选:A.【点评】本题考查了幂函数指数函数与对数函数的单调性、不等式的性质,考查了推理能力与计算能力,属于基础题.5.已知角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos150°),则α=()A.150° B.135° C.300° D.60°【解答】解:∵角α(0°≤α<360°)终边上一点的坐标为(sin150°,cos150°),即(,﹣),则α为第四象限角,再根据tanα==﹣,∴α=360°﹣60°=300°,故选:C.【点评】本题主要考查任意角的三角函数的定义,特殊角的三角函数值,属于基础题.6.若3sinα+cosα=0,则的值为()A. B. C. D.﹣2【解答】解:∵3sinα+cosα=0,∴tanα=﹣,∴===,故选:A.【点评】本题考查同角三角函数基本关系的运用,考查学生的计算能力,比较基础.7.(2022•陕西)设函数f(x)=,则当x>0时,f[f(x)]表达式的展开式中常数项为()A.﹣20 B.20 C.﹣15 D.15【解答】解:当x>0时,f[f(x)]==的展开式中,常数项为:=﹣20.故选A.【点评】本题考查二项式系数的性质,考查运算求解能力,属于中档题.8.(2022•新课标Ⅰ)函数y=的部分图象大致为()A. B. C. D.【解答】解:函数y=,可知函数是奇函数,排除选项B,当x=时,f()==,排除A,x=π时,f(π)=0,排除D.故选:C.【点评】本题考查函数的图形的判断,三角函数化简,函数的奇偶性以及函数的特殊点是判断函数的图象的常用方法.9.大数据时代出现了滴滴打车服务,二胎政策的放开使得家庭中有两个小孩的现象普遍存在,某城市关系要好的A,B,C,D四个家庭各有两个小孩共8人,准备使用滴滴打车软件,分乘甲、乙两辆汽车出去游玩,每车限坐4名(乘同一辆车的4名小孩不考虑位置),其中A户家庭的孪生姐妹需乘同一辆车,则乘坐甲车的4名小孩恰有2名来自于同一个家庭的乘坐方式共有()A.18种 B.24种 C.36种 D.48种【解答】解:根据题意,分2种情况讨论:①、A户家庭的孪生姐妹在甲车上,甲车上剩下两个要来自不同的家庭,可以在剩下的三个家庭中任选2个,再从每个家庭的2个小孩中任选一个,来乘坐甲车,有C32×C21×C21=12种乘坐方式;②、A户家庭的孪生姐妹不在甲车上,需要在剩下的三个家庭中任选1个,让其2个小孩都在甲车上,对于剩余的2个家庭,从每个家庭的2个小孩中任选一个,来乘坐甲车,有C31×C21×C21=12种乘坐方式;则共有12+12=24种乘坐方式;故选:B.【点评】本题考查排列、组合的应用,涉及分类计数原理的应用,关键是依据题意,分析“乘坐甲车的4名小孩恰有2名来自于同一个家庭”的可能情况.10.若函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数,则实数k的取值范围是()A. B. C. D.【解答】解:求导函数,当k=1时,(k﹣1,k+1)为(0,2),函数在上单调减,在上单调增,满足题意;当k≠1时,∵函数f(x)=2x2﹣lnx在其定义域的一个子区间(k﹣1,k+1)内不是单调函数∴f′(x)在其定义域的一个子区间(k﹣1,k+1)内有正也有负∴f′(k﹣1)f′(k+1)<0∴∴×<0∴∵k﹣1>0∴k+1>0,2k+1>0,2k+3>0,∴(2k﹣3)(2k﹣1)<0,解得综上知,故选D.【点评】本题以函数为载体,考查函数的单调性,考查学生分析解决问题的能力,分类讨论,等价转化是关键.二.填空题(共7小题)11.已知函数f(x)=,则f(f(﹣3))=0,f(x)的最小值是.【解答】解:∵f(x)=,∴f(﹣3)=lg10=1,则f(f(﹣3))=f(1)=0,当x≥1时,f(x)=,即最小值,当x<1时,x2+1≥1,f(x)=lg(x2+1)≥0最小值0,故f(x)的最小值是.故答案为:0;.【点评】本题主要考查了分段函数的函数值的求解,属于基础试题.12.函数f(x)=1﹣3sin2x的最小正周期为π.【解答】解:∵函数f(x)=1﹣3sin2x=1﹣3=﹣+cos2x,∴函数的最小正周期为=π,故答案为:π.【点评】本题主要考查半角公式的应用,余弦函数的周期性,属于基础题.13.函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,则φ=.【解答】解:函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,得平移后的图象的函数解析式为y=cos[2(x﹣)+φ]=cos(2x+φ﹣π),而函数y=sin(2x+)=,由函数y=cos(2x+φ)(﹣π≤φ<π)的图象向右平移个单位后,与函数y=sin(2x+)的图象重合,得2x+φ﹣π=,解得:φ=.符合﹣π≤φ<π.故答案为.【点评】本题给出函数y=cos(2x+φ)的图象平移,求参数φ的值.着重考查了函数图象平移的公式、三角函数的诱导公式和函数y=Asin(ωx+φ)的图象变换等知识,属于基础题.14.设曲线y=ex在点(0,1)处的切线与曲线y=(x>0)上点P的切线垂直,则P的坐标为(1,1).【解答】解:∵f'(x)=ex,∴f'(0)=e0=1.∵y=ex在(0,1)处的切线与y=(x>0)上点P的切线垂直∴点P处的切线斜率为﹣1.又y'=﹣,设点P(x0,y0)∴﹣=﹣1,∴x0=±1,∵x>0,∴x0=1∴y0=1∴点P(1,1)故答案为:(1,1)【点评】本题考查导数在曲线切线中的应用,在高考中属基础题型,常出现在选择填空中.15.已知2cos2x+sin2x=Asin(ωx+φ)+b(A>0),则A=,b=1.【解答】解:∵2cos2x+sin2x=1+cos2x+sin2x=1+(cos2x+sin2x)=sin(2x+)+1,∴A=,b=1,故答案为:;1.【点评】本题考查了二倍角的余弦公式、两角和的正弦函数的应用,熟练掌握公式是解题的关键.16.若将函数f(x)=x5表示为f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,其中a0,a1,a2,…a5为实数,则a3=10.【解答】解:f(x)=x5=[(x+1)﹣1]5=(x+1)5+(x+1)4(﹣1)+(x+1)3(﹣1)2+(x+1)2(﹣1)3+(x+1)1(﹣1)4+(﹣1)5而f(x)=a0+a1(1+x)+a2(1+x)2+…+a5(1+x)5,∴a3=(﹣1)2=10故答案为:10【点评】本题主要考查了二项式定理的应用,解题的关键利用x5=[(x+1)﹣1]5展开,同时考查了计算能力,属于基础题.17.设a,b∈R,若x≥0时恒有0≤x4﹣x3+ax+b≤(x2﹣1)2,则ab等于﹣1.【解答】解:验证发现,当x=1时,将1代入不等式有0≤a+b≤0,所以a+b=0,当x=0时,可得0≤b≤1,结合a+b=0可得﹣1≤a≤0,令f(x)=x4﹣x3+ax+b,即f(1)=a+b=0,又f′(x)=4x3﹣3x2+a,f′′(x)=12x2﹣6x,令f′′(x)>0,可得x>,则f′(x)=4x3﹣3x2+a在[0,]上减,在[,+∞)上增,又﹣1≤a≤0,所以f′(0)=a<0,f′(1)=1+a≥0,又x≥0时恒有0≤x4﹣x3+ax+b,结合f(1)=a+b=0知,1必为函数f(x)=x4﹣x3+ax+b的极小值点,也是最小值点.故有f′(1)=1+a=0,由此得a=﹣1,b=1,故ab=﹣1.故答案为:﹣1.【点评】本题考查函数恒成立的最值问题及导数综合运用题,由于所给的不等式较为特殊,可借助赋值法得到相关的方程直接求解,本题解法关键是观察出不等式右边为零时的自变量的值,及极值的确定,将问题灵活转化是解题的关键.三.解答题(共5小题)18.△ABC的内角A,B,C的对边分别为a,b,c,已知2cosC(acosB+bcosA)=c.(Ⅰ)求C;(Ⅱ)若c=,△ABC的面积为,求△ABC的周长.【解答】解:(Ⅰ)∵在△ABC中,0<C<π,∴sinC≠0已知等式利用正弦定理化简得:2cosC(sinAcosB+sinBcosA)=sinC,整理得:2cosCsin(A+B)=sinC,即2cosCsin(π﹣(A+B))=sinC2cosCsinC=sinC∴cosC=,∴C=;(Ⅱ)由余弦定理得7=a2+b2﹣2ab•,∴(a+b)2﹣3ab=7,∵S=absinC=ab=,∴ab=6,∴(a+b)2﹣18=7,∴a+b=5,∴△ABC的周长为5+.【点评】此题考查了正弦、余弦定理,三角形的面积公式,以及三角函数的恒等变形,熟练掌握定理及公式是解本题的关键.19.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为,,.(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.【解答】解:(Ⅰ)随机变量X的所有可能取值为0,1,2,3;则P(X=0)=(1﹣)×(1﹣)(1﹣)=,P(X=1)=×(1﹣)×(1﹣)+(1﹣)××(1﹣)+(1﹣)×(1﹣)×=,P(X=2)=(1﹣)××+×(1﹣)×+××(1﹣)=,P(X=3)=××=;所以,随机变量X的分布列为X0123P随机变量X的数学期望为E(X)=0×+1×+2×+3×=;(Ⅱ)设Y表示第一辆车遇到红灯的个数,Z表示第二辆车遇到红灯的个数,则所求事件的概率为P(Y+Z=1)=P(Y=0,Z=1)+P(Y=1,Z=0)=P(Y=0)•P(Z=1)+P(Y=1)•P(Z=0)=×+×=;所以,这2辆车共遇到1个红灯的概率为.【点评】本题考查了离散型随机变量的分布列与数学期望的计算问题,是中档题.20.已知命题P:函数f(x)为(0,+∞)上单调减函数,实数m满足不等式f(m+1)<f(3﹣2m).命题Q:当x∈[0,],实数m=sin2x﹣2sinx+1+a.若命题P是命题Q的充分不必要条件,求实数a的取值范围.【解答】解:命题P:根据已知条件得:,解得,即m;命题Q:x,∴sinx∈[0,1],m=sin2x﹣2sinx+1+a=(sinx﹣1)2+a;∴当sinx=1时,m取最小值a,当sinx=0时,m取最大值1+a,所以m∈[a,1+a];∵命题P是Q的充分不必要条件,所以;∴,解得;∴.【点评】考查根据函数的单调性解不等式,配方法求二次函数的值域,子集的概念.21.已知函数,求函数f(x)的定义域,并讨论它的奇偶性和单调性.【解答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论