新教材人教a版选择性必修第一册1.3.1空间直角坐标系课件_第1页
新教材人教a版选择性必修第一册1.3.1空间直角坐标系课件_第2页
新教材人教a版选择性必修第一册1.3.1空间直角坐标系课件_第3页
新教材人教a版选择性必修第一册1.3.1空间直角坐标系课件_第4页
新教材人教a版选择性必修第一册1.3.1空间直角坐标系课件_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

空间向量及其运算的坐标表示第一章1.3.1空间直角坐标系1.了解空间直角坐标系.2.能在空间直角坐标系中写出所给定点、向量的坐标.核心素养:数学抽象、直观想象学习目标一空间直角坐标系1.空间直角坐标系及相关概念(1)空间直角坐标系:在空间选定一点O和一个单位正交基底{i,j,k},以O为原点,分别以i,j,k

的方向为正方向,以它们的长为单位长度建立三条数轴:

,它们都叫做坐标轴,这时我们就建立了一个

.(2)相关概念:

叫做原点,i,j,k

都叫做坐标向量,通过

的平面叫做坐标平面,分别称为

平面、

平面、

平面,它们把空间分成八个部分.x轴、y轴、z轴空间直角坐标系OxyzO每两个坐标轴OxyOyzOzx新知学习2.右手直角坐标系在空间直角坐标系中,让右手拇指指向

的正方向,食指指向

的正方向,如果中指指向

的正方向,则称这个坐标系为右手直角坐标系.x轴y轴z轴思考空间直角坐标系有什么作用?可以通过空间直角坐标系将空间点、直线、平面数量化,将空间位置关系解析化.

二空间一点的坐标有序实数组(x,y,z)A(x,y,z)xyz思考空间直角坐标系中,坐标轴上的点的坐标有何特征?x轴上的点的纵坐标、竖坐标都为0,即(x,0,0).y轴上的点的横坐标、竖坐标都为0,即(0,y,0).z轴上的点的横坐标、纵坐标都为0,即(0,0,z).三空间向量的坐标

思考空间向量的坐标和点的坐标有什么关系?点A在空间直角坐标系中的坐标为(x,y,z),那么向量

的坐标也为(x,y,z).SIKAOBIANXIPANDUANZHENGWU判断正误:1.空间直角坐标系中,在x轴上的点的坐标一定是(0,b,c)的形式.(

)2.空间直角坐标系中,在xOz平面内的点的坐标一定是(a,0,c)的形式.(

)3.关于坐标平面yOz对称的点其纵坐标、竖坐标保持不变,横坐标相反.(

)×√√即时巩固一、求空间点的坐标例1

(1)画一个正方体ABCD-A1B1C1D1,若以A为坐标原点,以棱AB,AD,AA1所在的直线分别为x轴、y轴、z轴,取正方体的棱长为单位长度,建立空间直角坐标系,则①顶点A,C的坐标分别为______________;②棱C1C中点的坐标为_________;③正方形AA1B1B对角线的交点的坐标为__________.(0,0,0),(1,1,0)典例剖析(2)已知正四棱锥P-ABCD的底面边长为4,侧棱长为10,试建立适当的空间直角坐标系,写出各顶点的坐标.解∵正四棱锥P-ABCD的底面边长为4,侧棱长为10,以正四棱锥的底面中心为原点,平行于BC,AB所在的直线分别为x轴、y轴,垂直于平面ABCD的直线为z轴,建立如图所示的空间直角坐标系,则正四棱锥各顶点的坐标分别为A(2,-2,0),B(2,2,0),C(-2,2,0),D(-2,-2,0),P(0,0,).答案不唯一.反思感悟反思感悟(1)建立空间直角坐标系的原则①让尽可能多的点落在坐标轴上或坐标平面.②充分利用几何图形的对称性.(2)求某点M的坐标的方法作MM′垂直平面xOy,垂足M′,求M′的横坐标x,纵坐标y,即点M的横坐标x,纵坐标y,再求M点在z轴上射影的竖坐标z,即为M点的竖坐标z,于是得到M点的坐标(x,y,z).

解建立如图所示的空间直角坐标系.点E在z轴上,它的横坐标、纵坐标均为0,而E为DD1的中点,由F作FM⊥AD,FN⊥CD,垂足分别为M,N,(答案不唯一)二、空间点的对称问题例2在空间直角坐标系中,已知点P(-2,1,4).(1)求点P关于x轴对称的点的坐标;

(2)求点P关于xOy平面对称的点的坐标;

(3)求点P关于点M(2,-1,-4)对称的点的坐标.

反思感悟空间点对称问题的解题策略(1)空间点的对称问题可类比平面直角坐标系中点的对称问题,要掌握对称点的变化规律,才能准确求解.(2)对称点的问题常常采用“关于谁对称,谁保持不变,其余坐标相反”这个结论.跟踪训练已知点P(2,3,-1)关于坐标平面xOy的对称点为P1,点P1关于坐标平面yOz的对称点为P2,点P2关于z轴的对称点为P3,则点P3的坐标为____________.(2,-3,1)

三、空间向量的坐标解建立如图所示的空间直角坐标系,=-4i+4j+4k=(-4,4,4).反思感悟向量坐标的求法(1)点A的坐标和向量

的坐标形式完全相同;(2)起点不是原点的向量的坐标可以通过向量的运算求得.跟踪训练已知A(3,5,-7),B(-2,4,3),设点A,B在yOz平面上的射影分别为A1,B1,则向量

的坐标为____________.(0,-1,10)

随堂小测1.在空间直角坐标系中,P(2,3,4),Q(-2,-3,-4)两点的位置关系是()A.关于x轴对称

B.关于yOz平面对称C.关于坐标原点对称

D.以上都不对CA3.点P(1,1,1)关于xOy平面的对称点P1的坐标为__________;点P关于z轴的对称点P2的坐标为____________.(1,1,-1)(-1,-1,1)

4.在长方体ABCD-A1B1C1D1中,若D(0,0,0),A(4,0,0),B(4,2,0),A1(4,0,3),则向量

的坐标为________.(-4,2,3)=-4i+2j+3k=(-4,2,3).5.已知空间直角坐标系中三点A,B,M,点A与点B关于点M对称,且已知A点的坐标为(3,2,1),M点的坐标为(4,3,1),则B点的坐标为________.(5,4,1)解析

设B点的坐标为(x,y,z),

6.如图,正方体ABCD-A′B′C′D′的棱长为2,则图中的点M关于y轴的对称点的坐标为________________.(-1,-2,-1)解析因为D(2,-2,0),C′(0,-2,2),所以线段DC′的中点M的坐标为(1,-2,1),所以点M关于y轴的对称点的坐标为(-1,-2,-1).7.已知向量p在基底{a,b,c}下的坐标为(2,1,-1),则p在基底{2a,b,-c}下的坐标为________;在基底{a+b,a-b,c}下的坐标为____________.(1,1,1)解析由题意知p=2a+b-c,则向量p在基底{2a,b,-c}下的坐标为(1,1,1).设向量p在基底{a+b,a-b,c}下的坐标为(x,y,z),则p=x(a+b)+y(a-b)+zc=(x+y)a+(x-y)b+zc,又∵p=2a+b-c,8.如图,在空间直角坐标系中,BC=2,原点O是BC的中点,点D在平面yOz内,且∠BDC=90°,∠DCB=30°,求点D的坐标.解过点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论