




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年广东省梅州市成考专升本高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.
2.A.-cosxB.-ycosxC.cosxD.ycosx
3.函数y=x3-3x的单调递减区间为()A.A.(-∞,-1]
B.[-1,1]
C.[1,+∞)
D.(-∞,+∞)
4.极限等于().A.A.e1/2B.eC.e2D.1
5.
6.
7.
8.
9.设有直线
当直线l1与l2平行时,λ等于().A.A.1
B.0
C.
D.一1
10.
11.对于微分方程y"-2y'+y=xex,利用待定系数法求其特解y*时,下列特解设法正确的是()。A.y*=(Ax+B)ex
B.y*=x(Ax+B)ex
C.y*=Ax3ex
D.y*=x2(Ax+B)ex
12.设y=2x3,则dy=().
A.2x2dx
B.6x2dx
C.3x2dx
D.x2dx
13.
A.sinx+C
B.cosx+C
C.-sinx+C
D.-COSx+C
14.设函数z=y3x,则等于().A.A.y3xlny
B.3y3xlny
C.3xy3x
D.3xy3x-1
15.设y=cos4x,则dy=()。A.4sin4xdxB.-4sin4xdxC.(1/4)sin4xdxD.-(1/4)sin4xdx
16.
17.在下列函数中,在指定区间为有界的是()。
A.f(x)=22z∈(一∞,0)
B.f(x)=lnxz∈(0,1)
C.
D.f(x)=x2x∈(0,+∞)
18.已知作用在简支梁上的力F与力偶矩M=Fl,不计杆件自重和接触处摩擦,则以下关于固定铰链支座A的约束反力表述正确的是()。
A.图(a)与图(b)相同B.图(b)与图(c)相同C.三者都相同D.三者都不相同
19.
20.A.e-1dx
B.-e-1dx
C.(1+e-1)dx
D.(1-e-1)dx
二、填空题(20题)21.设y=ex/x,则dy=________。
22.设y=sin2x,则dy=______.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.设y=xe,则y'=_________.
34.
35.
36.设y=cos3x,则y'=__________。
37.
38.设y=f(x)可导,点xo=2为f(x)的极小值点,且f(2)=3.则曲线y=f(x)在点(2,3)处的切线方程为__________.
39.40.微分方程y'+9y=0的通解为______.
三、计算题(20题)41.当x一0时f(x)与sin2x是等价无穷小量,则
42.
43.
44.求曲线在点(1,3)处的切线方程.
45.
46.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.
47.求微分方程的通解.
48.
49.
50.
51.求函数f(x)=x3-3x+1的单调区间和极值.
52.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为
S(x).
(1)写出S(x)的表达式;
(2)求S(x)的最大值.
53.求微分方程y"-4y'+4y=e-2x的通解.
54.
55.将f(x)=e-2X展开为x的幂级数.
56.证明:
57.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?
58.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度
u(x,y)=2+y2,求该薄板的质量m.
59.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.
60.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.
四、解答题(10题)61.
62.求由曲线xy=1及直线y=x,y=2所围图形的面积A。
63.
64.所围成的平面区域。
65.
66.
67.(本题满分10分)
68.
69.
70.求曲线y=ln(1+x2)的凹区间。
五、高等数学(0题)71.zdy一ydz=0的通解_______。
六、解答题(0题)72.
参考答案
1.C解析:
2.C本题考查的知识点为二阶偏导数。由于z=ysinx,因此可知应选C。
3.B
4.C本题考查的知识点为重要极限公式.
由于,可知应选C.
5.B
6.D解析:
7.A
8.B
9.C本题考查的知识点为直线间的关系.
10.C解析:
11.D特征方程为r2-2r+1=0,特征根为r=1(二重根),f(x)=xex,α=1为特征根,因此原方程特解y*=x2(Ax+B)ex,因此选D。
12.B由微分基本公式及四则运算法则可求得.也可以利用dy=y′dx求得故选B.
13.A
14.D本题考查的知识点为偏导数的计算.
z=y3x
是关于y的幂函数,因此
故应选D.
15.B
16.C
17.A∵0<2x<1x∈(一∞,0)∴f(x)=2x在区间(一∞,0)内为有界函数。
18.D
19.C
20.D本题考查了函数的微分的知识点。
21.
22.2cos2xdx这类问题通常有两种解法.
解法1利用公式dy=y'dx,先求y',由于y'=cos2x·(2x)'2cos2x,
因此dy=2cos2xdx.
解法2利用微分运算公式
dy=d(sin2x)=cos2x·d(2x)=2cos2xdx.
23.e-2
24.
25.
26.
27.0
28.
29.(-∞2)(-∞,2)解析:
30.1本题考查了无穷积分的知识点。
31.本题考查的知识点为定积分的基本公式。
32.
33.(x+1)ex本题考查了函数导数的知识点。
34.
35.(00)
36.-3sin3x
37.
38.
39.>1
40.y=Ce-9x本题考查的知识点为求解可分离变量微分方程.
分离变量
两端分别积分
lny=-9x+C1,y=Ce-9x.
41.由等价无穷小量的定义可知
42.
43.
则
44.曲线方程为,点(1,3)在曲线上.
因此所求曲线方程为或写为2x+y-5=0.
如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点
(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为
45.由一阶线性微分方程通解公式有
46.
47.
48.
49.
50.
51.函数的定义域为
注意
52.
53.解:原方程对应的齐次方程为y"-4y'+4y=0,
54.
55.
56.
57.需求规律为Q=100ep-2.25p
∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,
∴当P=10时,价格上涨1%需求量减少2.5%
58.由二重积分物理意义知
59.
60.
列表:
说明
61.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年私募基金行业当前竞争格局与未来发展趋势分析报告
- 2025年汽车产业园行业当前市场规模及未来五到十年发展趋势报告
- 收入科目课件
- 2025年住院医师规范化培训院级师资考核试题(含答案)
- 2025年矿产权评估师重点试题带答案
- 2024年事业单位考试内江市东兴区《公共基础知识》全真模拟试题含解析
- 播放课件不显示页数问题
- 2025年初级卫生专业技术资格练习题有参考答案
- 2025年施工员之装修施工基础知识考试题库附完整答案(必刷)
- 2025年公务员考试公共基础知识模拟试题及答案
- 2025健康体检服务规范
- 税务政策培训课件
- 循环水培训课件
- 大型丧事活动方案
- 阿尔茨海默氏症典型病例解析
- 2025年中小学心理健康教育教师考试试题及答案
- 教师写作培训课件
- 中国无人机智能巡检系统行业市场前景预测及投资价值评估分析报告
- 十五五林业建设总结和十五五林业发展规划思路-0-图文
- 财务分析入门从零开始学
- 2025年航拍无人机驾驶员(五级)职业技能鉴定理论考试题库(含答案)
评论
0/150
提交评论