2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)_第1页
2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)_第2页
2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)_第3页
2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)_第4页
2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)_第5页
已阅读5页,还剩23页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年广东省江门市普通高校对口单招高等数学一自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.微分方程y"-y=ex的一个特解应具有的形式为(下列各式中α、b为常数)。A.aex

B.axex

C.aex+bx

D.axex+bx

2.A.1

B.0

C.2

D.

3.下列关于动载荷Kd的叙述不正确的一项是()。

A.公式中,△j为冲击无以静载荷方式作用在被冲击物上时,冲击点沿冲击方向的线位移

B.冲击物G突然加到被冲击物上时,K1=2,这时候的冲击力为突加载荷

C.当时,可近似取

D.动荷因数Ka因为由冲击点的静位移求得,因此不适用于整个冲击系统

4.

5.

6.

7.设f(x)=sin2x,则f(0)=()

A.-2B.-1C.0D.2

8.

9.单位长度扭转角θ与下列哪项无关()。

A.杆的长度B.扭矩C.材料性质D.截面几何性质

10.设函数f(x)在[0,b]连续,在(a,b)可导,f′(x)>0.若f(a)·f(b)<0,则y=f(x)在(a,b)().

A.不存在零点

B.存在唯一零点

C.存在极大值点

D.存在极小值点

11.用待定系数法求微分方程y"-y=xex的一个特解时,特解的形式是(式中α、b是常数)。A.(αx2+bx)ex

B.(αx2+b)ex

C.αx2ex

D.(αx+b)ex

12.过点(0,2,4)且平行于平面x+2z=1,y-3z=2的直线方程为

A.

B.

C.

D.-2x+3(y-2)+z-4=0

13.设函数z=sin(xy2),则等于()。A.cos(xy2)

B.xy2cos(xy2)

C.2xyeos(xy2)

D.y2cos(xy2)

14.

15.

16.

17.设f(x)为区间[a,b]上的连续函数,则曲线y=f(x)与直线x=a,x=b,y=0所围成的封闭图形的面积为()。A.

B.

C..

D.不能确定

18.方程y"+3y'=x2的待定特解y*应取().A.A.AxB.Ax2+Bx+CC.Ax2D.x(Ax2+Bx+C)

19.

20.设函数y=f(x)的导函数,满足f(-1)=0,当x<-1时,f(x)<0;当x>-1时,f(x)>0.则下列结论肯定正确的是().

A.x=-1是驻点,但不是极值点B.x=-1不是驻点C.x=-1为极小值点D.x=-1为极大值点二、填空题(20题)21.

22.

23.设y=ln(x+2),贝y"=________。

24.

25.设z=2x+y2,则dz=______。26.27.28.

29.如果函数f(x)在[a,b]上连续,在(a,b)内可导,则在(a,b)内至少存在一点ξ,使得f(b)-f(a)=________。

30.设,则f'(x)=______.31.

32.

33.

34.35.36.

37.

38.

39.40.三、计算题(20题)41.当x一0时f(x)与sin2x是等价无穷小量,则42.43.研究级数的收敛性(即何时绝对收敛,何时条件收敛,何时发散,其中常数a>0.44.求函数y=x-lnx的单调区间,并求该曲线在点(1,1)处的切线l的方程.45.

46.设抛物线Y=1-x2与x轴的交点为A、B,在抛物线与x轴所围成的平面区域内,以线段AB为下底作内接等腰梯形ABCD(如图2—1所示).设梯形上底CD长为2x,面积为

S(x).

(1)写出S(x)的表达式;

(2)求S(x)的最大值.

47.

48.求微分方程y"-4y'+4y=e-2x的通解.

49.证明:50.51.求微分方程的通解.

52.

53.已知某商品市场需求规律为Q=100e-0.25p,当p=10时,若价格上涨1%,需求量增(减)百分之几?

54.

55.求函数一的单调区间、极值及其曲线的凹凸区间和拐点.56.57.将f(x)=e-2X展开为x的幂级数.58.求曲线在点(1,3)处的切线方程.59.求函数f(x)=x3-3x+1的单调区间和极值.60.设平面薄板所占Oxy平面上的区域D为1≤x2+y2≤4,x≥0,y≥0,其面密度

u(x,y)=2+y2,求该薄板的质量m.四、解答题(10题)61.

62.

63.

64.

65.

66.

67.函数y=y(x)由方程ey=sin(x+y)确定,求dy.68.

(1)切点A的坐标(a,a2).

(2)过切点A的切线方程。69.70.求,其中区域D是由曲线y=1+x2与y=0,x=0,x=1所围成.五、高等数学(0题)71.曲线y=x3一12x+1在区间(0,2)内()。

A.凸且单增B.凹且单减C.凸且单增D.凹且单减六、解答题(0题)72.

参考答案

1.B方程y"-y=0的特征方程是r2-1=0,特征根为r1=1,r2=-1。

方程y"-y=ex中自由项f1(x)=ex,α=1是特征单根,故应设定y*=αxex,因此选B。

2.C

3.D

4.A

5.C

6.D

7.D由f(c)=sin2x可得f"(x)=cos2x(2x)"=2cos2x,f"(0)=2cos0=2,故选D。

8.C解析:

9.A

10.B由于f(x)在[a,b]上连续f(z)·fb)<0,由闭区间上连续函数的零点定理可知,y=f(x)在(a,b)内至少存在一个零点.又由于f(x)>0,可知f(x)在(a,b)内单调增加,因此f(x)在(a,b)内如果有零点,则至多存在一个.

综合上述f(x)在(a,b)内存在唯一零点,故选B.

11.Ay"-y=0的特征方程是r2-1=0,特征根为r1=1,r2=-1

y"-y=xex中自由项f(x)=xex,α=1是特征单根,应设y*=x(ax+b)ex=(αx2+bx)ex。

所以选A。

12.C

13.D本题考查的知识点为偏导数的运算。由z=sin(xy2),知可知应选D。

14.C

15.B

16.B解析:

17.B本题考查的知识点为定积分的几何意义。由定积分的几何意义可知应选B。常见的错误是选C。如果画个草图,则可以避免这类错误。

18.D本题考查的知识点为二阶常系数线性微分方程特解y*的取法.

由于相应齐次方程为y"+3y'0,

其特征方程为r2+3r=0,

特征根为r1=0,r2=-3,

自由项f(x)=x2,相应于Pn(x)eαx中α=0为单特征根,因此应设

故应选D.

19.B

20.C本题考查的知识点为极值的第-充分条件.

由f(-1)=0,可知x=-1为f(x)的驻点,当x<-1时f(x)<0;当x>-1时,

f(x)>1,由极值的第-充分条件可知x=-1为f(x)的极小值点,故应选C.21.12dx+4dy.

本题考查的知识点为求函数在一点处的全微分.

22.

解析:

23.

24.22解析:25.2dx+2ydy

26.f(x)本题考查了导数的原函数的知识点。

27.28.2.

本题考查的知识点为二次积分的计算.

由相应的二重积分的几何意义可知,所给二次积分的值等于长为1,宽为2的矩形的面积值,故为2.或由二次积分计算可知

29.f"(ξ)(b-a)由题目条件可知函数f(x)在[a,b]上满足拉格朗日中值定理的条件,因此必定存在一点ξ∈(a,b),使f(b)-f(a)=f"(ξ)(b-a)。

30.本题考查的知识点为复合函数导数的运算.

31.

32.

33.34.5.

本题考查的知识点为二元函数的偏导数.

解法1

解法2

35.

36.

37.(1+x)ex(1+x)ex

解析:

38.连续但不可导连续但不可导

39.x--arctanx+C本题考查了不定积分的知识点。

40.41.由等价无穷小量的定义可知

42.

43.

44.

45.

46.

47.由一阶线性微分方程通解公式有

48.解:原方程对应的齐次方程为y"-4y'+4y=0,

49.

50.

51.

52.

53.需求规律为Q=100ep-2.25p

∴当P=10时价格上涨1%需求量减少2.5%需求规律为Q=100ep-2.25p,

∴当P=10时,价格上涨1%需求量减少2.5%

54.

55.

列表:

说明

56.

57.58.曲线方程为,点(1,3)在曲线上.

因此所求曲线方程为或写为2x+y-5=0.

如果函数y=f(x)在点x0处的导数f′(x0)存在,则表明曲线y=f(x)在点

(x0,fx0))处存在切线,且切线的斜率为f′(x0).切线方程为

59.函数的定义域为

注意

60.由二重积分物理意义知

61.

62.

63.

64.

65.解

66.

67.68.本题考查的知识点为定积分的几何意义和曲线的切线方程.

α=1.

因此A点的坐标为(1,1).

过A点的切线方程为y一1=2(x一1)或y=2x一1.

本题在利用定积分表示平面图形时,以y为积分变量,以简化运算,这是值得注意的技巧.

69.70.积分区域D如图1-4所示。D可以表示为0≤x≤1,0≤y≤1+x2本题考查的知识点为计算二重积分,选择积分次序。如

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论