




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年贵州省铜仁地区普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)
2.设x∈R,则“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件
3.有四名高中毕业生报考大学,有三所大学可供选择,每人只能填报一所大学,则报考的方案数为()A.
B.
C.
D.
4.设函数f(x)=x2+1,则f(x)是()
A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数
5.A.5B.6C.8D.10
6.若直线x-y+1=0与圆(x-a)2+y2=2有公共点,则实数a取值范围是()A.[―3,一1]B.[―1,3]C.[-3,1]D.(-∞,一3]∪[1,+∞)
7.已知,则sin2α-cos2α的值为()A.-1/8B.-3/8C.1/8D.3/8
8.已知平面向量a=(1,3),b(-1,1),则ab=A.(0,4)B.(-1,3)C.0D.2
9.
10.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
11.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
12.若a0.6<a<a0.4,则a的取值范围为()</aA.a>1B.0<a<1C.a>0D.无法确定
13.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.120
14.设集合M={1,2,4,5,6},集合N={2,4,6},则M∩N=()A.{2,4,5,6}B.{4,5,6}C.{1,2,3,4,5,6}D.{2,4,6}
15.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11
16.A.B.C.
17.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)
18.已知向量a=(1,3)与b=(x,9)共线,则实数x=()A.2B.-2C.-3D.3
19.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数小于十位数的共有()A.210B.360C.464D.600
20.设集合A={x|1≤x≤5},Z为整数集,则集合A∩Z中元素的个数是()A.6B.5C.4D.3
二、填空题(10题)21.不等式的解集为_____.
22.已知正实数a,b满足a+2b=4,则ab的最大值是____________.
23.(x+2)6的展开式中x3的系数为
。
24.如图是一个程序框图,若输入x的值为8,则输出的k的值为_________.
25.
26.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.
27.要使的定义域为一切实数,则k的取值范围_____.
28.在等比数列{an}中,a5
=4,a7
=6,则a9
=
。
29.双曲线x2/4-y2/3=1的离心率为___.
30.已知_____.
三、计算题(5题)31.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
32.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.
33.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
34.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
35.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.
四、简答题(10题)36.简化
37.已知函数:,求x的取值范围。
38.等差数列的前n项和为Sn,已知a10=30,a20=50。(1)求通项公式an。(2)若Sn=242,求n。
39.已知是等差数列的前n项和,若,.求公差d.
40.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn
41.如图,四棱锥P-ABCD中,PA丄底面ABCD,AB//CD,AD=CD=1,BAD=120°,PA=,ACB=90°。(1)求证:BC丄平面PAC。(2)求点B到平面PCD的距离。
42.已知求tan(a-2b)的值
43.已知A,B分别是椭圆的左右两个焦点,o为坐标的原点,点P(-1,)在椭圆上,线段PB与y轴的焦点M为线段PB的中心点,求椭圆的标准方程
44.已知双曲线C的方程为,离心率,顶点到渐近线的距离为,求双曲线C的方程
45.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
五、证明题(10题)46.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.
47.己知
a
=(-1,2),b
=(-2,1),证明:cos〈a,b〉=4/5.
48.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.
49.△ABC的三边分别为a,b,c,为且,求证∠C=
50.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.
51.若x∈(0,1),求证:log3X3<log3X<X3.
52.己知sin(θ+α)=sin(θ+β),求证:
53.
54.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
55.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.
六、综合题(2题)56.
(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.
57.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.
参考答案
1.C
2.C充分条件,必要条件,充要条件的判断.由x>1知,x3>1;由x3>1可推出x>1.
3.C
4.B由题可知,f(x)=f(-x),所以函数是偶函数。
5.A
6.C直线与圆的公共点.圆(x-a)2+y2=2的圆心C(a,0)到x-y+1=0
7.B三角函数的恒等变换,二倍角公式.sin2α-cos2α=-cos2α=2sin2α-1=-3/8
8.D
9.D
10.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
11.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
12.B已知函数是指数函数,当a在(0,1)范围内时函数单调递减,所以选B。
13.B
14.D集合的计算∵M={1,2,3,4,5,6},N={2,4,6},∴M∩N={2,4,6}
15.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),
16.C
17.A向量的运算.=(l,2)+(3,4)=(4,6).
18.D
19.B
20.B集合的运算.∵A={x|1≤x≤5},Z为整数集,则A∩Z={1,2,3,4,5}.
21.-1<X<4,
22.2基本不等式求最值.由题
23.160
24.4程序框图的运算.执行循环如下:x=2×8+1=17,k=1;x=2×17+1=35,k=2时;x=2×35+1=71,k=3时;x=2×71+1=143>115,k=4,此时满足条件.故输出k的值为4.
25.7
26.4、6、8
27.-1≤k<3
28.
29.e=双曲线的定义.因为
30.-1,
31.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
32.
33.
34.
35.
36.
37.
X>4
38.
39.根据等差数列前n项和公式得解得:d=4
40.
41.证明:(1)PA⊥底面ABCDPA丄BC又∠ACB=90°,BC丄AC则BC丄平面PAC(2)设点B到平面PCD的距离为hAB//CDAB//平面PCD又∠BAD=120°∠ADC=60°又AD=CD=1则△ADC为等边三角形,且AC=1PA=
PD=PC=2
42.
43.点M是线段PB的中点又∵OM丄AB,∴PA丄AB则c=1+=1,a2=b2+c2解得,a2=2,b2=1,c2=1因此椭圆的标准方程为
44.
45.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
46.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即
47.
48.
∴PD//平面ACE.
49.
50.
51.
52.
53.
54.
55.证明:考虑对数函数y=lgx的限制知
:当x∈(1,10)时,y∈(0,1)A-B=lg2
x-lgx2
=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B
56.解:(1)斜率k=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b
=4,此时r=4,圆的方
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 国际结算试题及答案
- 达标焦虑面试题目及答案
- 类似分解式的试题及答案
- 常见专业面试题目及答案
- 引导设计灵感的国际商业美术设计师考试课程与试题及答案
- 安康英语面试题目及答案
- 实验操作考试试题及答案
- 2024纺织纤维特性考察试题及答案
- 2025西南某县城市文旅宣传营销方案
- 实践中广告效果的关键指标与研究方向试题及答案
- 如何申报纵向课题
- 在线考试系统的设计与实现论文
- 环境行为学(70页)ppt课件
- 个性化家庭医生签约服务包
- GA∕T 1622-2019 法庭科学 生物检材中沙蚕毒素、杀虫双、杀虫环和杀螟丹检验 气相色谱、气相色谱-质谱和液相色谱-质谱法
- 国际商事仲裁法
- 区域电力系统规划设计开题报告
- 居民企业资产股权划转特殊性税务处理申报表
- 高层建筑无地下室倾覆及滑移计算
- 有机无机复混肥生产职位操作规程
- ERP生产管理系统用户手册(共51页)
评论
0/150
提交评论