




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年黑龙江省大兴安岭地区普通高校对口单招数学自考测试卷(含答案)学校:________班级:________姓名:________考号:________
一、单选题(20题)1.从1,2,3,4这4个数中任取两个数,则取出的两数之和是奇数的概率是()A.1/5B.1/5C.2/5D.2/3
2.若函数y=√1-X,则其定义域为A.(-1,+∞)B.[1,+∞]C.(-∞,1]D.(-∞,+∞)
3.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2
D.|a|=|b|
4.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4
5.拋物线y2-4x+17=0的准线方程是()A.x=2B.x=-2C.x=1D.x=-1
6.A.B.C.D.
7.A.2B.1C.1/2
8.A.(6,7)B.(2,-1)C.(-2,1)D.(7,6)
9.若实数a,b满足a+b=2,则3a+3b的最小值是()A.18
B.6
C.
D.
10.下列立体几何中关于线面的四个命题正确的有()(1)垂直与同一平面的两个平面平行(2)若异面直线a,b不垂直,则过a的任何一个平面与b都不垂直(3)垂直与同一平面的两条直线一定平行(4)垂直于同一直线两个平面一定平行A.1个B.2个C.3个D.4个
11.A.11B.99C.120D.121
12.已知甲、乙、丙3类产品共1200件,且甲、乙、丙3类产品的数量之比为3:4:5,现采用分层抽样的方法从中抽取60件,则乙类产品抽取的件数是()A.20B.21C.25D.40
13.下列函数中是奇函数的是A.y=x+3
B.y=x2+1
C.y=x3
D.y=x3+1
14.设集合{x|-3<2x-1<3},集合B为函数y=lg(x-1)的定义域,则A∩B=()A.(1,2)B.[1,2]C.[1,2)D.(1,2]
15.已知A是锐角,则2A是A.第一象限角B.第二象限角C.第一或第二象限角D.D小于180°的正角
16.同时掷两枚质地均匀的硬币,则至少有一枚出现正面的概率是()A.lB.3/4C.1/2D.1/4
17.若102x=25,则10-x等于()A.
B.
C.
D.
18.在等差数列{an}中,a1=2,a3+a5=10,则a7=()A.5B.8C.10D.14
19.如图所示的程序框图中,输出的a的值是()A.2B.1/2C.-1/2D.-1
20.若一几何体的三视图如图所示,则这个几何体可以是()A.圆柱B.空心圆柱C.圆D.圆锥
二、填空题(20题)21.
22.拋物线的焦点坐标是_____.
23.
24.
25.某程序框图如下图所示,该程序运行后输出的a的最大值为______.
26.
27.若lgx>3,则x的取值范围为____.
28.为椭圆的焦点,P为椭圆上任一点,则的周长是_____.
29.一个口袋中装有大小相同、质地均匀的两个红球和两个白球,从中任意取出两个,则这两个球颜色相同的概率是______.
30.函数f(x)=sin2x-cos2x的最小正周期是_____.
31.己知两点A(-3,4)和B(1,1),则=
。
32.若长方体的长、宽、高分别为1,2,3,则其对角线长为
。
33.
34.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的表面积为_____.
35.
36.在P(a,3)到直线4x-3y+1=0的距离是4,则a=_____.
37.己知等比数列2,4,8,16,…,则2048是它的第()项。
38.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
39.
40.已知直线l1:ax-y+2a+1=0和直线l2:2x-(a-l)y+2=0(a∈R)则l1⊥l2的充要条件是a=______.
三、计算题(5题)41.在等差数列{an}中,前n项和为Sn
,且S4
=-62,S6=-75,求等差数列{an}的通项公式an.
42.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.
43.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。
44.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
45.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.
四、简答题(5题)46.在1,2,3三个数字组成无重复数字的所有三位数中,随机抽取一个数,求:(1)此三位数是偶数的概率;(2)此三位数中奇数相邻的概率.
47.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。
48.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
49.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率
50.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值
五、解答题(5题)51.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
52.已知函数f(x)=log21+x/1-x.(1)求f(x)的定义域;(2)讨论f(x)的奇偶性;(3)用定义讨论f(x)的单调性.
53.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.
54.
55.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
六、证明题(2题)56.△ABC的三边分别为a,b,c,为且,求证∠C=
57.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2
+(y+1)2
=8.
参考答案
1.D古典概型的概率.任意取到两个数的方法有6种:1,2;1,3;1,4;2,3;2,4;3,4;,满足题意的有4种:1,2;1,4;2,3;3,4;,则所求的概率为4/6=2/3
2.C
3.D
4.B解:设等比数列{an}的公比为q,∵a1+a3=20,a2+a4=40,∴q(a1+a3)=20q=40,
解得q=2.
5.D
6.C
7.B
8.A
9.B不等式求最值.3a+3b≥2
10.B垂直于同一平面的两个平面不一定平行;垂直于一平面的直线与该平面内的所有直线垂直;垂直于同一平面的两条直线不一定平行也可能共线;垂直于同一直线的两个平面平行。
11.C
12.A分层抽样方法.采用分层抽样的方法,乙类产品抽取的件数是60×4/3+4+5=20.
13.C
14.D不等式的计算,集合的运算.由题知A=[-1,2],B=(1,+∞),∴A∩B=(1,2]
15.D
16.B独立事件的概率.同时掷两枚质地均匀的硬币,可能的结果:(正,正),(正,反),(反,正),(反,反)共4种结果,至少有一枚出现正面的结果有3种,所求的概率是3/4
17.B
18.B等差数列的性质.由等差数列的性质得a1+a7=a3+a5,因为a1=2,a3+a5=10,所以a7=8,
19.D程序框图的运算.执行如下,a=2,2>0,a=1/2,1/2>0,a=-l,-1<0,退出循环,输出-1。
20.B几何体的三视图.由三视图可知该几何体为空心圆柱
21.56
22.
,因为p=1/4,所以焦点坐标为.
23.
24.{x|1<=x<=2}
25.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.
26.-1
27.x>1000对数有意义的条件
28.18,
29.1/3古典概型及概率计算公式.两个红球的编号为1,2两个白球的编号为3,4,任取两个的基本事件有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),两球颜色相同的事件有(1,2)和(3,4),故两球颜色相同概率为2/6=1/3
30.πf(x)=2(1/2sin2x-1/2cos2x)=2sin(2x-π/4),因此最小正周期为π。
31.
32.
,
33.4.5
34.6π圆柱的侧面积计算公式.利用圆柱的侧面积公式求解,该圆柱的侧面积为27x1x2=4π,一个底面圆的面积是π,所以该圆柱的表面积为4π+27π=6π.
35.1-π/4
36.-3或7,
37.第11项。由题可知,a1=2,q=2,所以an=2n,n=log2an=log22048=11。
38.72,
39.-2i
40.1/3充要条件及直线的斜率.l1⊥l2→2a/a-1=-1→(2a)+(a-1)=0,解得A=1/3
41.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23
42.
43.
44.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
45.
46.1,2,3三个数字组成无重复数字的所有三位数共有(1)其中偶数有,故所求概率为(2)其中奇数相邻的三位数有个故所求概率为
47.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。
48.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
49.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9
50.
51.
52.(1)要使函数f(x)=㏒21+x/1-x有意义,则须1+x/1-x>0解得-1<x<1,所以f(x)的定义域为{x|-1<x<1}.(2)因为f(x)的定义域为{x|-1<x<1},且f(-x)=㏒2(1+x/1-x)-1=-㏒21+x/1-x=-f(x).所以f(x)是定义在(-1,1)上的奇函数.(3)设-1<x1<x2<1,则f(x1)-f(x2)=log1+x1/1+x2=㏒(1+x1)(1-x2)f(1-x1)(1+x2)∵-1<x1<x2<1
53.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC//AD,∴∠PAD即为异面直线PA与BC所成的角.由(1)知,PD⊥AD,在Rt△PAD中,PD=AD,故∠PAD=45°即为所求.
54.
55.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 测试工具对团队效率的影响分析试题及答案
- 教育质量评估与认证体系在职业教育质量提升中的应用策略报告
- 2025年金融科技企业估值模型构建与投资决策的金融科技投资趋势预测
- 农村供水及配套管网提升工程项目投资估算
- 2025年高校产学研合作中半导体技术转移与成果转化报告
- 2025年智能照明系统在智能商业建筑中的节能控制与智能照明场景切换可行性研究报告
- 中小企业运营管理方案
- 少儿美育的策略及实施路径
- 2025年文化创意产业园区建筑初步设计设计创新理念评估报告
- 高新技术产业园运营管理方案
- 民事起诉状(物业服务合同纠纷)示范文本
- 2024年中考历史第二轮专题复习5:中国古代边疆治理(训练题)
- 呼吸内科进修汇报课件
- 管理会计理论与实务知到智慧树章节测试课后答案2024年秋上海大学
- 长租公寓管理运营方案
- 2024年高考物理试卷(重庆卷) 含答案
- 《林业基础知识》考试复习题库(含答案)
- 新版中国食物成分表
- 团员发展纪实簿
- 酶工程习题(答案全)
- 食物损失和浪费控制程序
评论
0/150
提交评论