




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第第页八年级数学上册《全等三角形》单元测试题(有答案解析)一.选择题1.已知△ABC≌△A′B′C′,∠A=80°,∠B=40°,那么∠C′的度数为()A.80° B.40° C.60° D.120°2.下列判定直角三角形全等的方法,不正确的是()A.两条直角边对应相等 B.斜边和一锐角对应相等 C.斜边和一直角边对应相等 D.两个直角三角形的面积相等3.如图,△ACB≌△A′CB′,∠ACB=70°,∠ACB′=100°,则∠BCA′的度数为()A.30° B.35° C.40° D.50°4.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150° B.180° C.210° D.225°5.下列说法中,错误的是()A.全等三角形对应角相等 B.全等三角形对应边相等 C.全等三角形的面积相等 D.面积相等的两个三角形一定全等6.如图,在△ABC和△DEF中,∠C=∠F=90°,添加下列条件,不能判定这两个三角形全等的是()A.∠A=∠D,∠B=∠E B.AC=DF,AB=DE C.∠A=∠D,AB=DE D.AC=DF,CB=FE7.如图所示,∠C=∠D=90°,添加下列条件①AC=AD;②∠ABC=∠ABD;③∠BAC=∠BAD;④BC=BD,能判定Rt△ABC与Rt△ABD全等的条件的个数是()A.1 B.2 C.3 D.48.如图,AB=AC,点D,E分别在AB,AC上,补充下列一个条件后,不能判断△ABE≌△ACD的是()A.∠B=∠CB.AD=AEC.∠BDC=∠CEB D.BE=CD9.如图,AB⊥CD,且AB=CD,E,F是AD上两点,CE⊥AD,BF⊥AD.若CE=4,BF=3,EF=2,则AD的长为()A.3 B.5 C.6 D.710.如图,在△ABC中,F是高AD和BE的交点,BC=6,CD=2,AD=BD,则线段AF的长度为()A.2 B.1 C.4 D.3二.填空题11.已知△ABC≌△DEF,且△ABC的周长为12,若AB=3,EF=4,则AC=.12.如图,△ABC中,AD⊥BC于D,要使△ABD≌△ACD,若根据“HL”判定,还需加条件.13.如图,点D在BC上,DE⊥AB于点E,DF⊥BC交AC于点F,BD=CF,BE=CD.若∠AFD=145°,则∠EDF=.14.如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是.15.如图,在3×3的正方形网格中,则∠1+∠2+∠3+∠4+∠5等于.16.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2=.17.如图,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是.18.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=4cm,CE=3cm,则DE=cm.19.如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为时,能够使△BPE与△CQP全等.20.已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④AE=EC,其中正确的是(填序号)三.解答题21.求证:全等三角形的对应边中线相等.22.如图(1),AB=7cm,AC⊥AB,BD⊥AB垂足分别为A、B,AC=5cm.点P在线段AB上以2cm/s的速度由点A向点B运动,同时点Q在射线BD上运动.它们运动的时间为t(s)(当点P运动结束时,点Q运动随之结束).(1)若点Q的运动速度与点P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,并判断此时线段PC和线段PQ的位置关系,请分别说明理由;(2)如图(2),若“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA”,点Q的运动速度为xcm/s,其它条件不变,当点P、Q运动到何处时有△ACP与△BPQ全等,求出相应的x的值.23.如图,AB=BC,∠BAD=∠BCD=90°,点D是EF上一点,AE⊥EF于E,CF⊥EF于F,AE=CF,求证:Rt△ADE≌Rt△CDF.24.我们知道能完全重合的图形叫做全等图形,因此,如果两个四边形能完全重合,那么这两个四边形全等,也就是说,当两个四边形的四个内角、四条边都分别对应相等时,这两个四边形全等.请借助三角形全等的知识,解决有关四边形全等的问题.如图,已知,四边形ABCD和四边形A′B′C′D′中,AB=A′B′,BC=B′C′,∠B=∠B′,∠C=∠C′,现在只需补充一个条件,就可得四边形ABCD≌四边形A′B′C′D′.下列四个条件:①∠A=∠A′;②∠D=∠D′;③AD=A′D′;④CD=C′D′(1)其中,符合要求的条件是.(直接写出编号)(2)选择(1)中的一个条件,证明四边形ABCD≌四边形A′B′C′D′.25.(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小刘想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG,AH是BC边上的高,延长HA交EG于点I,求证:I是EG的中点.26.如图,利用尺规,在△ABC的边AC上方作∠CAE=∠ACB,在射线AE上截取AD=BC,连接CD,并证明:CD∥AB(尺规作图要求保留作图痕迹,不写作法)27.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.参考答案与解析一.选择题1.解:在△ABC中,∠A=80°,∠B=40°,∴∠C=180°﹣80°﹣40°=60°,∵△ABC≌△A′B′C′,∴∠C′=∠C=60°,故选:C.2.解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确;如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS可判断两三角形全等,故选项B正确;如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL可判断两三角形全等,故选项C正确;如果两个直角三角形的面积相等,那么无法判定两个直角三角形全等,故D错误;故选:D.3.解:∵△ACB≌△A′CB′,∴∠A′CB′=∠ACB=70°,∵∠ACB′=100°,∴∠BCB′=∠ACB′﹣∠ACB=30°,∴∠BCA′=∠A′CB′﹣∠BCB′=40°,故选:C.4.解:由题意得:AB=ED,BC=DC,∠D=∠B=90°,∴△ABC≌△EDC(SAS),∴∠BAC=∠1,∠1+∠2=180°.故选:B.5.解:A、全等三角形对应角相等,说法正确;B、全等三角形对应边相等,说法正确;C、全等三角形的面积相等,说法正确;D、面积相等的两个三角形一定全等,说法错误,例如一边长为6,这边上的高为3和一边长为3,这边上的高为6的两个三角形,面积相等,却不全等;故选:D.6.解:A.添加条件∠A=∠D,∠B=∠E时,没有边的条件,故不能判定△ABC≌△DEF,B.添加条件AC=DF,AB=DE,根据HL可证明△ABC≌△DEF,C.添加条件∠A=∠D,AB=DE,根据AAS可证明△ABC≌△DEF,D.添加条件AC=DF,CB=FE,根据SAS可证明△ABC≌△DEF,故选:A.7.解:①当AC=AD时,由∠C=∠D=90°,AC=AD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);②当∠ABC=∠ABD时,由∠C=∠D=90°,∠ABC=∠ABD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);③当∠BAC=∠BAD时,由∠C=∠D=90°,∠BAC=∠BAD且AB=AB,可得Rt△ABC≌Rt△ABD(AAS);④当BC=BD时,由∠C=∠D=90°,BC=BD且AB=AB,可得Rt△ABC≌Rt△ABD(HL);故选:D.8.解:A、根据ASA即可证明三角形全等,本选项不符合题意.B、根据SAS即可证明三角形全等,本选项不符合题意.C、根据AAS或ASA即可证明三角形全等,本选项不符合题意.D、SSA不能判定三角形全等,本选项符合题意.故选:D.9.解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=4,BF=DE=3,∵EF=2,∴AD=AF+DF=4+(3﹣2)=5,故选:B.10.证明:∵F是高AD和BE的交点,∴∠ADC=∠FDB=∠AEF=90°,∴∠DAC+∠AFE=90°,∵∠FDB=90°,∴∠FBD+∠BFD=90°,又∵∠BFD=∠AFE,∴∠FBD=∠DAC,在△BDF和△ADC中,,∴△BDF≌△ADC(AAS),∴DF=CD=2,∴AD=BD=BC﹣DF=4,∴AF=AD﹣DF=4﹣2=2;故选:A.二.填空题11.解:∵△ABC≌△DEF,∴EF=BC=4,在△ABC中,△ABC的周长为12,AB=3,∴AC=12﹣AB﹣BC=12﹣4﹣3=5,故填5.12.解:还需添加条件AB=AC,∵AD⊥BC于D,∴∠ADB=∠ADC=90°,在Rt△ABD和Rt△ACD中,,∴Rt△ABD≌Rt△ACD(HL),故答案为:AB=AC.13.解:如图,∵∠DFC+∠AFD=180°,∠AFD=145°,∴∠CFD=35°.又∵DE⊥AB,DF⊥BC,∴∠BED=∠CDF=90°,在Rt△BDE与△Rt△CFD中,,∴Rt△BDE≌△Rt△CFD(HL),∴∠BDE=∠CFD=35°,∴∠EDF+∠BDE=∠EDF+∠CFD=90°,∴∠EDF=55°.故答案是:55°.14.解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,∴点D的坐标是(﹣4,3),当△ABD′≌△BAC时,△ABD′的高D′G=△BAC的高CH=4,AG=BH=1,∴OG=2,∴点D′的坐标是(﹣4,2),故答案为:(﹣4,3)或(﹣4,2).15.解:在△ABC和△AEF中,,∴△ABC≌△AEF(SAS),∴∠5=∠BCA,∴∠1+∠5=∠1+∠BCA=90°,在△ABD和△AEH中,,∴△ABD≌△AEH(SAS),∴∠4=∠BDA,∴∠2+∠4=∠2+∠BDA=90°,∵∠3=45°,∴∠1+∠2+∠3+∠4+∠5=90°+90°+45°=225°.故答案为:225°.16.解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.17.解:当有1点D时,有1对全等三角形;当有2点D、E时,有3对全等三角形;当有3点D、E、F时,有6对全等三角形;当有4点时,有10个全等三角形;…当有n个点时,图中有个全等三角形.故答案为:.18.解:∵在Rt△ABC中,∠BAC=90°,∠ADB=∠AEC=90°∴∠BAD+∠EAC=90°,∠BAD+∠B=90°∴∠EAC=∠B∵AB=AC∴△ABD≌△ACE(AAS)∴AD=CE,BD=AE∴DE=AD+AE=CE+BD=7cm.故填7.19.解:设点P运动的时间为t秒,则BP=3t,CP=8﹣3t,∵∠B=∠C,∴①当BE=CP=5,BP=CQ时,△BPE与△CQP全等,此时,5=8﹣3t,解得t=1,∴BP=CQ=3,此时,点Q的运动速度为3÷1=3厘米/秒;②当BE=CQ=5,BP=CP时,△BPE与△CQP全等,此时,3t=8﹣3t,解得t=,∴点Q的运动速度为5÷=厘米/秒;故答案为:3厘米/秒或厘米/秒.20.解:①∵BD为△ABC的角平分线,∴∠ABD=∠CBD,在△ABD和△EBC中,,∴△ABD≌△EBC(SAS),∴①正确;②∵BD为△ABC的角平分线,BD=BC,BE=BA,∴∠BCD=∠BDC,∠BAE=∠BEA,∵△ABD≌△EBC,∴∠BCE=∠BDA,∴∠BCE+∠BCD=∠BDA+∠BDC=180°,∴②正确;③∵∠BCE=∠BDA,∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∠BCD=∠BEA,∴∠DCE=∠DAE,∴△ACE为等腰三角形,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=AE=EC,∵BD为△ABC的角平分线,EF⊥AB,而EC不垂直与BC,∴EF≠EC,∴③错误;④由③知AD=AE=EC,∴④正确;综上所述,正确的结论是①②④.故答案是:①②④.三.解答题21.已知:如图,△ABC≌△A1B1C1,AD、A1D1分别是对应边BC、B1C1的中线,求证:AD=A1D1,证明:∵△ABC≌△A1B1C1,∴AB=A1B1,BC=B1C1,∠B=∠B1,∵AD、A1D1分别是对应边BC、B1C1的中线,∴BD=BC,B1D1=B1C1,∴BD=B1D1,在△ABD和△A1B1D1中,,∴△ABD≌△A1B1D1(SAS),∴AD=A1D1.22.解:(1)△ACP≌△BPQ,PC⊥PQ.理由如下:∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,∵AP=BQ=2,∴BP=5,∴BP=AC,在△ACP和△BPQ中,∴△ACP≌△BPQ(SAS);∴∠C=∠BPQ,∵∠C+∠APC=90°,∴∠APC+∠BPQ=90°,∴∠CPQ=90°,∴PC⊥PQ;(2)①若△ACP≌△BPQ,则AC=BP,AP=BQ,可得:5=7﹣2t,2t=xt解得:x=2,t=1;②若△ACP≌△BQP,则AC=BQ,AP=BP,可得:5=xt,2t=7﹣2t解得:x=,t=.综上所述,当△ACP与△BPQ全等时x的值为2或.23.解:连接BD,∵∠BAD=∠BCD=90°,在Rt△ABD和Rt△CBD中,,∴Rt△ABD≌Rt△CBD(HL),∴AD=CD,∵AE⊥EF于E,CF⊥EF于F,∴∠E=∠F=90°,在Rt△ADE和Rt△CDF中,,∴Rt△ADE≌Rt△CDF(HL).24.解:(1)符合要求的条件是①②④,故答案为:①②④;(2)选④,证明:连接AC、A′C′,在△ABC与△A′B′C′中,,∴△ABC≌△A′B′C′(SAS),∴AC=A′C′,∠ACB=∠A′C′B′,∵∠BCD=∠B′C′D′,∴∠BCD﹣∠ACB=∠B′C′D′﹣∠A′C′B′,∴∠ACD=∠A′C′D′,在△ACD和△A′C′D中,,∴△ACD≌△A′C′D′(SAS),∴∠D=∠D,∠DAC=∠D′A′C′,DA=D′A′,∴∠BAC+∠DAC=∠B′A′C′+∠D′A′C′,即∠BAD=∠B′A′D′,∴四边形ABCD和四边形A′B′C′D′
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年航空航天企业飞行领航员安全生产知识考试试题及答案
- 第4课 共同开发建设祖国说课稿-2025-2026学年中华民族大团结-中华民族大团结
- 高校和社区服务合同模板(3篇)
- 高铁站土建施工合同(3篇)
- 安徽司法考试试题及答案
- 河北经贸大学校园汽车租赁服务及车辆安全检查合同
- 本科毕业生就业服务及权益保障协议
- 2025公务员线上面试题及答案
- 舞蹈生专业测试题及答案
- 祖国我爱你教学设计课件
- 公安援疆工作总结
- 第8课《网络新世界》第一课时-统编版《道德与法治》四年级上册教学课件
- 2025秋人教版美术七年级第一单元 峥嵘岁月第1课 情感表达2
- 2025年审计部招聘考试模拟题及答案详解
- 2025年招聘市场年中洞察报告-瀚纳仕
- Bowtie安全分析培训课件
- 退役军人优抚政策课件
- 财务遴选笔试题及答案
- (2025秋新版)人教版二年级数学上册全册教案(教学设计)
- 六年级上册音乐课教案
- 肿瘤病人疼痛评估与干预策略
评论
0/150
提交评论