




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
arXiv:2302.08261v1[cs.LG]16Feb2023
KNOWLEDGE-AUGMENTEDGRAPHMACHINELEARNING
FORDRUGDISCOVERY
ASURVEYFROMPRECISIONTOINTERPRETABILITY
DavideMottin
AarhusUniversitydavide@cs.au.dk
ZhiqiangZhong
AarhusUniversityzzhong@cs.au.dk
AnastasiaBarkova
WhiteLabGenomics
abarkova@
February17,2023
ABSTRACT
TheintegrationofArtificialIntelligence(AI)intothefieldofdrugdiscoveryhasbeenagrowingareaofinterdisciplinaryscientificresearch.However,conventionalAImodelsareheavilylimitedinhandlingcomplexbiomedicalstructures(suchas2Dor3Dproteinandmoleculestructures)andprovidinginterpretationsforoutputs,whichhinderstheirpracticalapplication.Asoflate,GraphMachineLearning(GML)hasgainedconsiderableattentionforitsexceptionalabilitytomodelgraph-structuredbiomedicaldataandinvestigatetheirpropertiesandfunctionalrelationships.Despiteextensiveefforts,GMLmethodsstillsufferfromseveraldeficiencies,suchasthelimitedabilitytohandlesupervisionsparsityandprovideinterpretabilityinlearningandinferenceprocesses,andtheirineffectivenessinutilisingrelevantdomainknowledge.Inresponse,recentstudieshaveproposedintegratingexternalbiomedicalknowledgeintotheGMLpipelinetorealisemorepreciseandinterpretabledrugdiscoverywithlimitedtraininginstances.However,asystematicdefinitionforthisburgeoningresearchdirectionisyettobeestablished.Thissurveypresentsacomprehensiveoverviewoflong-standingdrugdiscoveryprinciples,providesthefoundationalconceptsandcutting-edgetechniquesforgraph-structureddataandknowledgedatabases,andformallysummarisesKnowledge-augmentedGraphMachineLearning(KaGML)fordrugdiscovery.AthoroughreviewofrelatedKaGMLworks,collectedfollowingacarefullydesignedsearchmethodology,areorganisedintofourcategoriesfollowinganovel-definedtaxonomy.Tofacilitateresearchinthispromptlyemergingfield,wealsosharecollectedpracticalresourcesthatarevaluableforintelligentdrugdiscoveryandprovideanin-depthdiscussionofthepotentialavenuesforfutureadvancements.
1Introduction
Drugdiscoveryanddevelopmenthavebeenoneofthemostprominentandchallengingresearchtasksfordecades[
1
,
2
,
3
].Priortoadrugbeingmarketedanddistributedtopatients,itmustundergoamultitudeofresearchvalidations.From initialearlydrugdiscoverytopreclinicaldevelopment,andsubsequenttoclinicaltrialsandfinalregulatoryapproval,itusuallytakes10-15yearsandcostsaround2billionUSdollars[
4
,
5
,
6
].Thedrugdevelopmentprocesstypicallybeginswiththeidentificationofthetargetproteinornucleicacidinvolvedinaspecificdiseaseduringearlydrugdiscovery.Thisisfollowedbytheidentificationofasmallmoleculeorbiologicdrug(suchasanantibodyorprotein)thatwill interactwiththetargetandmodulateitsactivitywiththeaimofcuringorpreventingthedisease.Inthecaseofsmallmolecules,high-throughputscreeningexperimentsareperformedtoidentifypromisingcompounds,aprocessknownas“hitidentification”.Fromthesehits,somecompoundsareselectedthroughinvitroandinvivoassaysandarechemicallyoptimisedtoimprovepropertiessuchasstability,affinityorsolubility,togiverisetothe“lead”compounds.Afterseveralroundsofstructuraloptimisation,theleadmoleculebecomesadrugcandidateandcanproceedtopreclinicalstudiesinanimals,followedbyclinicalstudiesinhumans.Theidealdrugshouldbenon-toxicandhaveasfewsideeffectsaspossibleforthepatientswhilebeingsolubleandeffectivelyinteractingwiththetarget.Eachstepoftheprocessischaracterisedbyahighrateoffailureandsubstantialcosts.
2
OtherProficient
BiomedicalData
hasfunction
Gene
GeneOntology
…
Gene
…
…
hasPhenotype
hasindication
…
Drug
hassideeffect
Phenotype
PhenotypeOntology
(a)
APREPRINT-FEBRUARY17,2023
BiomedicalDataareGraphs
(b)
HumanBiomedicalKnowledge
TheoriesandEquations
DescriptionContext
MoleculeNetworkProteinStructure
Disease
DiseaseOntology
KnowledgeGraph
VirusStructureDrug-DrugInteraction
Figure1:Illustrationofreal-worldbiomedicaldataintheformofgraphsandexamplesofhumanbiomedicalknowledge.(a)Graphsareanaturalwaytorepresentbiomedicaldata,suchasmolecule2Dor3Dnetwork,proteinstructureisa3Dgraphthatrecordsthechemicalforcebetweenaminoacidresiduesandinteractionsbetweendrugsrepresentedasagraph.(b)Toyexamplesrepresenthumanbiomedicalknowledgetasksindifferentforms.Forinstance,formalscientificknowledgeincludeswell-definedtheoriesandequations.Also,thereismoregeneralexperimentalknowledge,includingdescriptioncontext,otherproficientdataandknowledgegraph.
Toreducethefinancialburdenandincreasethesuccessrate,researchershavebeenworkingonacceleratingdrugdiscoverybytakingadvantageofremarkableArtificialIntelligence(AI)techniques[
7
,
8
,
9
,
10
,
11
].Technologicaladvancesnowallowforthecreationofvastamountsofdatainareassuchasgenomics,proteomics,andimaging,whichcanbeusedtoinformthedrugdiscoveryprocess[
9
,
12
].AIcananalysethesedataandidentifypatternsandrelationshipsthatmightnothavebeenotherwisenoticeable,leadingtotheidentificationofnewtargetsandtheoptimisationofexistingones[
13
,
8
].AI-baseddrugdiscoveryisalsobeingusedtostreamlinetheprocessofdrugdevelopmentbypredictingthelikelihoodofsuccessofacandidatedrug,reducingthetimeandcostrequiredtobringanewdrugtomarket[
10
,
14
].Furthermore,AIisbeingusedtopredictpotentialsideeffectsandtoxicity,allowingfortheidentificationofpotentialsafetyissuesbeforeclinicaltrials[
15
,
11
].Withtheseadvancements,AIhasthepotentialtotransformthedrugdiscoveryprocess[
7
],enablingfasterandmoreefficientdrugdevelopmentandbringingnewtherapiestopatientsmorequickly.
Biomedicaldataishighlyinterconnected[
16
,
17
]andcanbeeasilyrepresentedasgraphs(ornetworks),whichhaveavarietyofapplicationsatdifferentstagesofthedrugdiscoveryanddevelopmentprocess.Forinstance,asillustratedinFigure
1
-(a),biomedicaldatacanbehierarchicallyrepresentedasgraphs.Startingfromthemolecularlevel,atomscanberepresentedasnodes,andchemicalbondsasedgesof(2Dor3D)moleculargraphs[
18
,
19
].Onthemacro-moleculelevel,interactions(edges)betweenaminoacidresidues(nodes)organiseas(2Dor3D)proteingraphs[
20
,
21
].Atthecompoundlevel,edgesinthedrug-druginteraction(DDI)networkcanindicatechemicalinteractions(edges)betweendrugs(nodes)measuredbylong-termclinicalscreens[
22
,
23
].
Nevertheless,conventionalAItoolsstrugglewiththehandlingofcomplexgraph-structureddata.Thefeatureextractorsemployedbymachinelearningmodelsareoftennottransferable,requiringmanualdesignforeachspecificdatasetandtask.Althoughdeeplearningmodels[
24
,
25
,
26
]havethecapabilitytolearnfromrawdata,theyarestilllimitedintheirabilitytohandlecomplexgraphstructures.Inresponse,GraphMachineLearning(GML),anewclassofAImethods,hasbeenproposedtoinvestigategraph-structureddata.TheessentialideaofGMListolearneffectivefeaturerepresentationsofnodes(e.g.,drugsinDDInetworks),edges(e.g.,relationsorinteractionsbetweendrug-drugordrug-disease),orthe(sub)graphs(e.g.,moleculargraphs)[
27
].Thesecorrespondingnode-,edge-and(sub)graph-leveldownstreamtaskscanberealisedbasedontheselearnedrepresentations.Accordingtodifferentrepresentationlearningmechanisms,GMLapproachescanbebroadlycategorisedinto“shallow”and“deep”classes.Inparticular,atypeofdeepGMLmethodcalledGraphNeuralNetworks(GNNs)[
28
,
29
,
30
,
31
,
32
],whicharedeepneuralnetwork
3
APREPRINT-FEBRUARY17,2023
architecturesspecificallydesignedforgraph-structuredata,areattractinggrowinginterest.GNNsiterativelyupdatethefeaturesofgraphnodesbypropagatingtheinformationfromtheirneighbouringnodes.Thesemethodshavealreadybeensuccessfullyappliedtoarangeoftasksanddomains,includingdrugdiscovery[
16
,
33
,
34
].
However,despitethecurrentpaceofGMLindrugdiscovery,theysufferfromseveralseriousdeficiencies,includinghighdatadependency(i.e.,strongperformancereliesonhigh-qualifiedtrainingdataset)[
35
,
36
]andpoorgeneralisation(i.e.,uncertainmodelperformanceoninstancesthathaveneverbeenobservedintrainingdata)[
37
,
38
].Thesedeficienciesoriginateprimarilyfromthemodels’data-drivennatureandtheirinabilitytoexploitthedomainknowledgeeffectively.Inaddition,therehasbeenanincreaseddemandformethodsthathelppeopleunderstandandinterprettheunderlyingmodelsandprovidesmoretrustworthiness.Inanefforttomitigatethelackofinterpretabilityandtrustworthinessofcertainmachinelearningmodelsandtoaugmenthumanreasoninganddecision-making,attentionhasbeendrawntoeXplainableArtificialIntelligence(XAI)[
39
]andTrustworthyArtificialIntelligence(TAI)[
40
]approaches,thatprovidehuman-comprehensibleexplanationsforthemodel’sinherentmechanismandoutputs.
Toaddresstheselimitations,researchersrecentlypaidattentiontoanewAIparadigm,whichwerefertoasKnowledge-augmentedGraphMachineLearning(KaGMLinshort),forsuperiordrugdiscovery.ItscoreideaistointegrateexternalhumanbiomedicalknowledgeintodifferentcomponentsoftheGMLpipelinetoachievemoreaccuratedrugdiscovery,alongwithuser-friendlyinterpretations,whichguaranteestheexpert’sknowledgeisnottobesubstituted.Biomedicalknowledgemayexistinvariousforms,asshowninFigure
1
-(b),includingformalscientificknowledge(e.g.,well-establishedlawsortheoriesinadomainthatgovernthepropertiesorbehavioursoftargetvariables),informalexperimentalknowledge(e.g.,well-knownfactsorrulesextractedfromlongtimeobservationsandcanalsobeinferredthroughhumans’reasoning).Thecontributionsofthissurveyarethefollowing:
•WearethefirsttoproposetheconceptofKaGMLandcomprehensivelysummariseexistingwork.ThediscussionbetweenKaGMLandexistingotherparadigmsemphasisesthenoveltyofKaGMLanditspromisingpotentialforpracticalmedicalapplications.
•WeproposeanoveltaxonomyofKaGMLapproachesaccordingtodifferentschemestoincorporateknowledgeintotheGMLpipeline.Itiseasierforthereaderstoidentifythecoredesignofdifferentmodelsandlocatetheinterestingcategories(Section
5
).Wecreatedapublicfoldertosharecollectedresources
1
andwillcontributetoitcontinuously.
•Wecarefullydiscusspracticaltoolsandknowledgedatabasesthathavebeen(orarehighlypossibletobe)usedbyKaGMLmethodstosolvepracticaldrugdiscoveryproblems(Section
6
).Weprovideaschematicrepresentationofpossibleschemestoorganisedifferentknowledgedatabasesaboutsmallmoleculedrugsintooneknowledgegraph.
•Wecoverthemethodologiesnotonlyforsolvingscientificproblemsunderacomputersciencescenariobut,moreimportantly,forreal-worldbiomedicalapplications.OursurveyishenceofinterestnotonlytoAIresearchersbutalsotobiologistsindifferentfields.Section
7
discussespromisingfutureworkforresearchersfrombothdisciplines
toexploit.
Table1:Summaryofthekeywordsusedintheliteraturesearch.
Area
Keywords
DrugDiscovery
KnowledgeGraph
GraphMachineLearning
DrugDiscovery,DrugDesign,DrugDevelopment,MedicineDiscovery,MedicineDesign,MedicineDevelopment
Knowledge-augmented,Knowledge-aware,Knowledge-informed,Knowledge-guided,Knowledge-enhanced,Knowledge-driven
GraphMachineLearning,GraphNeuralNetwork,GeometricMachineLearning
Searchmethodology.Allstudieswereretrievedinoneofthreefollowingways:(i)acomprehensivetop-downapproachthatconductedanextensivesearchofKaGMLpapersfrommajoracademicdatabasessuchasGoogleScholar,IEEExplore,ACMDigitalLibrary,DBLPComputerScienceBibliography,andScienceDirect,usingkeywordslistedinTable
1
;(ii)abottom-upapproachthatsurveyedrecentresearchoutputsinAIconferencesandworkshops;(iii)athoroughexaminationoftherelatedwork,discussionsections,andcitedreferencesfromthepapersobtainedinsteps(i)and(ii)toidentifyoverlookedworks.Wekeyword-searchedforworkscontainingaconjunctionofanyofthetermssummarisedinTable
1
,leadingtoaselectionofmorethan1,000articles.Approximately100werethoroughlyscannedaccordingtothecriteria,andabout20wereidentifieddirectlyfromtherelatedworksections.Wheneverpossible,weprioritisedpeer-reviewedpublicationsandmajorjournals/conferences(e.g.,Nature,Nat.Commun,Nat.Mach.
1
/zhiqiangzhongddu/Awesome-Knowledge-augmented-GML-for-Drug-Discovery
4
Nodeattributematrix
Adjacencymatrix
APREPRINT-FEBRUARY17,2023
Intell,NeurIPSICML,ICLR,AAAI,KDD)towhitepapersorunreviewedsubmissions.Studieswereselectedonlyifpresentingasubsymbolicsystem,includingsomeformsofincorporatingbiomedicalknowledgeintoGMLmodelsforprecisiondrugdiscoveryandproducinganyexplanationsusingbackgroundknowledgewithGMLmodels.ThefinallyidentifiedpapersaresummarisedintodifferentcategoriesinTable
4
.
Planofthefollowingsections.Therestofthispaperisorganisedasfollows.Section
2
introducestheconceptofgraphmachinelearninganddiverseaddressedtasks.Section
3
discussesthehumanknowledgedatabaseandknowledgegraphconcept.Section
4
providesatechnicalexpositionofprevailingintelligentdrugparadigmsanddescribeskeyapplicationsofgraphmachinelearningandknowledgegraphindrugdiscovery.Followinganovel-definedtaxonomy,wediscussthecollectedKaGMLfordrugdiscoverypapersinSection
5
.RelevantpracticalresourcesareshowninSection
6
,includingrelevantscientifictools,knowledgedatabasesandaschematicrepresentationofpossibleschemestoorganiseknowledgedatabasesaboutsmallmoleculedrugsfromvariousaspectsintooneknowledgegraph.Intheend,wescrutinisethepotentialdirectionsofKaGMLandconcludethepaperinSection
7
.Toassistreadersinfindingrelevantcontent,thepaperutilisesboxestohighlightcloselyrelatedtopics,includesfigurestoillustrateexamples,andtablestopresentcontrastingtopics.
2GraphMachineLearning
(a)
(b)
Graph
口Nodepropertyprediction
口Linkprediction
口Graphpropertyprediction
口Graphmodification/generation
口Etc.
36⋮61
⋯
0.4
0.3
X=⋮0.10.7
⋯
0
0A=⋮
1
0
4.4
9.1
⋮
0
1.8
00⋮01
10⋮01
01⋮10
…
…
Vector
⋱
…
⋱
…
basedrepresentations
…
…
(c)
v
u
PR(v|u)
EstimatetheprobabilityofvisitingnodevonarandomwalkstartingfromnodeuusingsomerandomwalkstrategyR.
(d)
⋮
…
1sthopaggregation
Figure2:Toyexamplesofthegraphandtypicalgraphrepresentationlearningapproaches.(a):AgraphcanbebasicallyrepresentedusinganodeattributematrixXandanadjacencymatrixA.(b)Graphrepresentationlearningcanconvertagraphintoasetofvectors,whichrecordinformationaboutthegraph.(c)Atoyexampleofrandomwalk-basedshallowGRLapproaches.(d)AtoyexampleofGNNmechanism.
Box1.FundamentalsofGraphMachineLearning
Definition1(Graph).Agraphwithnnodescanbeformallyrepresentedasg=(v,s),whichconsistsofnnodesuevand|v|=n.sCvxvdenotesthesetofedges,whereeu,vdenotestheedgebetweenuandu.NodeattributevectorxueRddescribessideinformationandmetadataofnodeu.ThenodeattributematrixXeRn×dcontainsattributevectorsforallnodesinthegraph.Similarly,edgeattributesxu,veRτforedgeeu,vcanbetakentogethertoformanedgeattributematrixXeeRm×τ.Apathfromnodeu1tonodeukisasequenceofedgesu1e1--u2...uuk.Forsubsequentdiscussion,wesummarisevandsintoanadjacencymatrixAe[0,1}n×n,whereeachentryAu,vis1ifeu,vexists,and0otherwise.AnexamplegraphanditsnodeattributematrixandadjacencymatrixareshowninFigure
2
-(a).
5
APREPRINT-FEBRUARY17,2023
Definition2(Neighbourhood).Fornodeo,itsneighbourhoodN(o)arenodesdirectlyconnectedtooing,andthenodedegreeisthesize|N(o)|.
Definition3(9-hopNeighbourhood).The9-hopneighbourhoodofnodeoisthesetofnodesthatareatadistancelessthanorequalto9fromnodeo,thatis,Nλ(o)=[u|0<d(o,u)<9}whered(.)denotestheshortestpathdistance.
Definition4(9-hopSubgraph).Subgraphsλ(o)=(v,s)isasubsetofagraphg,wherev:=(Nλ(o)n[o})ands:=((vxv)ns).
GraphAnalysisinArtificialIntelligenceEra.Toprocessthegraph-structureddata,GraphMachineLearning(GML)
[30]
isdesignedasapredominantapproachtofindingeffectivedatarepresentationsfromgraphdata.TheprincipaltargetofGMListoextractthedesiredfeaturesofagraphasinformativerepresentationsthatcanbeeasilyusedbydownstreamtaskssuchasnode-level,edge-levelandgraph-level,analysis,classificationandregressiontasks.TraditionalGMLapproachesmainlyrelyonhandcraftedfeatures,includinggraphstatistics
[41],
(e.g.,degree,centralityandclusteringcoefficient),kernelfunctions[
42
]andexpertsdesignedfeatures[
43
].However,traditionalGMLmodelsarebuiltontopofmanuallydesignedorprocessedfeaturesets.Thedevelopedfeatureextractorsareoftennottransferableandneedtobedesignedspecificallyforeachdatasetandtask.Theseconventionalapproachesoftensufferfrompracticallimitsonlarge-scalegraphswithrichnodeandedgeattributes.Recently,graphrepresentationlearning[
28
,
29
,
30
]emergedtobeapromisingdirection.
Definition5(GraphRepresentationLearning).Givenagraphg=(v,s),thetaskofgraphrepresentationlearning(orequivalentlygraphembedding)istolearnamappingfunctiontogeneratevectorrepresentationsforgraphelementsfGRL:g→Z,suchthatthelearnedrepresentations(Z),i.e.,embeddings,cancapturethestructureandsemanticsofgraph.Themappingfunction’seffectivenessisevaluatedbyapplyingZtodifferentdownstreamtasks.AtoyexampleshowsthepipelineinFigure
2
-(a)-(b).
DependingontheGraphRepresentationLearning(GRL)model’sinherentarchitecture,existingGRLmethodscanbecategorisedinto“shallow”or“deep”groups.ShallowGRLmethodscompriseanembeddinglookuptablethat
directlyencodeseachnodeasavectorandisoptimisedduringtraining.ThedeepGRLmethods-GraphNeuralNetworks(GNNs)-haverecentlyshownpromisingresultsinmodellingstructuralandrelationaldata[
31
].Definition6(GraphMachineLearningTraining).Givenagraphg=(v,s)andagraphrepresentationlearningmodelfGRL.ThegraphmachinelearningtrainingmechanismcanbedefinedasoptimisingtheparametersoffGRLtominimisethedifferencesbetweenpredictionsandtrainingsignals:
findargminc(fGRLe(g),Y)(1)
θ
whereerepresentsthetrainableparametersoffGRL,cisthelossfunctiontomeasurethedifferencesbetweenpredictionsandtrainingsignals.ThetrainingsignalYcanbeadiscreteone-hot/multi-hotvector(classification)oracontinuousvector(regression,linkprediction).DifferentlossfunctionsandoptimisationapproachescanbeadoptedaccordingtotherequirementsoffGRLandthedownstreamtasks.
2.1ShallowGraphRepresentationLearning
ShallowGRLmethodscompriseanembeddinglookuptablewhichdirectlyencodeseachnodeasavectorandisoptimisedduringtraining.Withinthisgroup,severalSkip-Gram[
44
]-basedNEmethodshavebeenproposed,suchasDeepWalk[
45
]andnode2vec[
46
],aswellastheirmatrixfactorisationinterpretationNetMF[
47
],LINE[
48
]andPTE[
49
].AsdepictedinFigure
2
-(c),DeepWalkgenerateswalksequencesforeachnodeonanetworkusingtruncatedrandomwalksandlearnsnoderepresentationsbymaximisingthesimilarityofrepresentationsfornodesthatoccurinthesamewalks,thuspreservingneighbourhoodstructures.Node2vecincreasestheexpressivityofDeepWalkbydefiningaflexiblenotionofanode’snetworkneighbourhoodanddesigningasecond-orderrandomwalkstrategytosampletheneighbourhoodnodes;LINEisaspecialcaseofDeepWalkwhenthesizeofthenode’scontextissettoone;PTEcanbeviewedasthejointfactorisationofmultiplenetworks’Laplacians[
47
].Tocapturethestructuralidentityofnodesindependentofnetworkpositionandneighbourhood’slabels,struc2vec[
50
]constructsahierarchytoencodestructuralnodesimilaritiesatdifferentscales.Despitetheirrelativesuccess,shallowGRLmethodsoftenignoretherichnessofnodeattributesandonlyfocusonthenetworkstructuralinformation,whichhugelylimitstheirperformance.
6
APREPRINT-FEBRUARY17,2023
2.2DeepGraphRepresentationLearningwithNeuralNetwork
GraphNeuralNetworks(GNNs)areaclassofneuralnetworkmodelssuitableforprocessinggraph-structureddata.TheyusethegraphstructureAandnodefeaturesXtolearnarepresentationvectorofanodezv,ortheentiregraphzζ.ModernGNNs[
51
]followacommonideaofarecursiveneighbourhoodaggregationormessage-passingscheme,whereweiterativelyupdatetherepresentationofanodebyaggregatingrepresentationsofitsneighbouringnodes.Afterliterationsofaggregationormessage-passing,anode’srepresentationcapturesthegraphstructuralinformationwithinl-hopneighbourhood.Thus,wecanformallydefinel-thlayerofaGNNas:
me)=AGGREGATEN([Au,v,h—1)|ueN(u)}),
me)=AGGREGATEI([Au,v|ueN(u)})h(2)
he)=COMBINE(mme))
whereAGGREGATEN(.)andAGGREGATEI(.)aretwoparameterisedfunctionstolearnduringtrainingprocess.me)isaggregatedmessagefromnodeu’sneighbourhoodnodesN(u)withtheirstructuralcoefficients,andme)istheresidualmessagefromnodeuafterperforminganadjustmentoperationtoaccountforstructuraleffectsfromitsneighbourhoodnodes.After,he)isthelearnedasrepresentationvectorofnodeuwithcombiningme)andme),withaCOMBINE(.)function,atthel-thiteration/layer.Notethatweinitialiseh=xvandthefinallearnedrepresentationvectorafterLiterations/layerszv=hWeillustratethelearningmechanismofGNNmodelsinFigure2-(d).Inaddition,intermsoftherepresentationofanentiregraph(zζ),wecanapplyaREADOUTfunctiontoaggregatenoderepresentationsofallnodesofthegraphg,as
zζ=READOUT([zv|Vzvev})(3)
whereREADOUTcanbeasimplepermutationinvariantfunctionsuchassummationoramoresophisticatedgraph-levelpoolingfunction.
FollowingthegeneralstructureofGNNsasdefinedinEquation
2
,wecanfurthergeneralisetheexistingGNNsasvariantsofit.Forinstance,severalclassicandpopularGNNscanbesummarisedasTable
2
.
Table2:DefinedifferentGNNvariantsaccordingtoEquation
2
.
GNNModel
AGGREGATEN(.)
AGGREGATEI(.)
COMBINE(.)
GCN[
52
]
W(e)w−1)
u∈Ⅳ(v)′|Ⅳ(u)||Ⅳ(v)|
W(e)w−1
′|Ⅳ(v)||Ⅳ(v)|
A(SUM(mme)))
GraphSAGE[
53
]
AGG([h—1)|ueN(u)})
he—1)
A(W(e).CONCAT(mme)))
GAT[
54
]
√u,vW(e)h—1)
u∈Ⅳ(v)
√vvW(e)he—1)
A(SUM(mme)))
GIN[
55
]
h—1)
u∈Ⅳ(v)
(1+e)he—1)
MLPθ(SUM(mme))))
WeonlyreviewpriorandconcurrentworkonGMLrelatedtoourcontributionswherenecessary.ForanoverviewofrecentvariantsandapplicationsofGML,werecommendthecomprehensivereviewarticles[
56
,
HYPERLINK\l"_
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 宠物眼科诊所创新创业项目商业计划书
- 肌肉放松饮料企业制定与实施新质生产力项目商业计划书
- 高校教师线上课程设计与实施案例
- 环保材料应用创新创业项目商业计划书
- 有机糙米烘焙工具创新创业项目商业计划书
- 华为产品项目开发流程规范
- 陕西省汉中市洋县2025-2026学年八年级上学期第一次教学素养测评道德与法治试卷(无答案)
- 企业年度财务审计工作流程梳理及案例
- 二年级查字典专项训练题集
- 公路水运工程施工企业安全生产管理人员考试试题及答案
- 国有企业招标采购相关法律法规与国有企业采购操作规范
- 应收账款明细台账模板
- 做成功父母培养成功孩子
- 师德师风负面清单及整改台账
- 【下载】新概念英语1-4册词汇带音标Excel版
- GB/T 21414-2021轨道交通机车车辆电气隐患防护的规定
- 骨骼肌肉疼痛康复治疗新进展课件
- 农业昆虫分类演示文稿课件
- Q∕SY 05268-2017 油气管道防雷防静电与接地技术规范
- 部编版六年级上册语文习作-笔尖流出的故事课件
- 信号与线性系统(第3章)
评论
0/150
提交评论