考点05方程与方程组_第1页
考点05方程与方程组_第2页
考点05方程与方程组_第3页
考点05方程与方程组_第4页
考点05方程与方程组_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点05方程与方程组课标对考点的要求对方程与方程组问题,中考命题需要满足下列要求:(1)能根据具体问题中的数量关系列出方程,体会方程是刻画现实世界数量关系的有效模型。(2)经历估计方程解的过程。(3)掌握等式的基本性质。(4)能解一元一次方程、可化为一元一次方程的分式方程。(5)掌握代入消元法和加减消元法,能解二元一次方程组。(6)能解简单的三元一次方程组(选学,不做考试要求)。(7)理解配方法,能用配方法、公式法、因式分解法解数字系数的一元二次方程。(8)会用一元二次方程根的判别式判别方程是否有实根和两个实根是否相等。(9)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。(10)能根据具体问题的实际意义,检验方程的解是否合理。重要问题解题思维方法总结一、解与列一元一次方程的一般步骤1.解一元一次方程的一般步骤:(1)去分母。在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。(2)去括号。一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。(3)移项。把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。(4)合并同类项。把方程化成ax=b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。(5)系数化为1。在方程两边都除以未知数的系数a,得到方程的解x=b/a,依据等式基本性质2,计算要仔细,分子分母勿颠倒。说明:理解方程ax=b在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解x=b/a;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。2.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。(2)设—设出未知数:根据提问,巧设未知数.(3)列—列出方程:设出未知数后,利用等量关系写出等式,即列方程。(4)解—解方程:解所列的方程,求出未知数的值.(5)答—检验,写答案:检验所求出的未知数的值是否是方程的解,是否符合实际,检验后写出答案,注意带上单位。二、解与列二元一次方程组的一般步骤将未知数的个数由多化少,逐一解决的想法,叫做消元思想。(1)代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法。2.列方程(组)解应用题的一般步骤(1)审:有什么,求什么,干什么;(2)设:设未知数,并注意单位;(3)找:等量关系;(4)列:用数学语言表达出来;(5)解:解方程(组).(6)验:检验方程(组)的解是否符合实际题意.(7)答:完整写出答案(包括单位).注意:找出相等关系“未知”转化为“已知”.有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等三、解分式方程方法1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程的根。四、解与列二元一次方程组的一般步骤1.一元二次方程的解法(1)直接开方法:适用形式:x2=p、(x+n)2=p或(mx+n)2=p。(2)配方法:套用公式a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2,配方法解一元二次方程的一般步骤是:①将已知方程化为一般形式;②化二次项系数为1;③常数项移到右边;④方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.(3)公式法:当b2-4ac≥0时,方程ax2+bx+c=0的实数根可写为:的形式,这个式子叫做一元二次方程ax2+bx+c=0的求根公式。这种解一元二次方程的方法叫做公式法。其中:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。①Δ=b2-4ac>0时,方程有两个不相等的实数根。,②Δ=b2-4ac=0时,方程有两个相等的实数根。③Δ=b2-4ac<0时,方程无实数根。定义:b2-4ac叫做一元二次方程ax2+bx+c=0的根的判别式,通常用字母Δ表示,即Δ=b2-4ac。(4)因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法。主要用提公因式法、平方差公式。第1步:审题。认真读题,分析题中各个量之间的关系;第2步:设未知数。根据题意及各个量的关系设未知数;第3步:列方程。根据题中各个量的关系列出方程;第4步:解方程。根据方程的类型采用相应的解法;第5步:检验。检验所求得的根是否满足题意。第6步:答。中考典例解析【例题1】(2021山东东营)某玩具商店周年店庆,全场八折促销,持会员卡可在促销活动的基础上再打六折.某电动汽车原价300元,小明持会员卡购买这个电动汽车需要花()元.A.240 B.180 C.160 D.144【答案】D【解析】打八折是指优惠后的价格是原价的80%,再打六折是指实际花的钱是八折后价格的60%,根据这些条件列出方程即可.设小明持会员卡购买这个电动汽车需要花x元,根据题意得:300×80%×60%=x,解得x=144【例题2】(2021齐齐哈尔)周末,小明的妈妈让他到药店购买口罩和消精湿巾,已知口罩每包3元,酒精湿巾每包2元,共用了30元钱(两种物品都买),小明的购买方案共有()A.3种 B.4种 C.5种 D.6种【答案】B【解析】设购买口罩包,酒精湿巾包,根据总价单价数量,即可列出关于的二元一次方程,结合均为正整数,即可得出购买方案的个数.【详解】解:设购买口罩包,酒精湿巾包,依据题意得:均为正整数,或或或小明共有4种购买方案.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题关键.【例题3】(2021湖南邵阳)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?意思是:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价值是多少?该问题中物品的价值是钱.【答案】53【解析】设有x人,物品的价值为y钱,由题意:几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.列出方程组,解方程组即可.解:设有x人,物品的价值为y钱,依题意,得:,解得:,即该问题中物品的价值是53钱.【例题4】(2021广西来宾)解分式方程:xx+1=x3x+3+1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.

去分母得:3x=x+3x+3,

解得:x=-3,

检验:当x=-3时,3(x+1)x=-【例题5】(2021齐齐哈尔)解方程:.【答案】,【解析】先移项再利用因式分解法解方程即可.∵,∴,∴,∴,.【点睛】本题考查了解一元二次方程-因式分解法,解题的关键是找准公因式.【例题6】(2021吉林长春)关于x的一元二次方程x2﹣6x+m=0有两个不相等的实数根,则m的值可能是()A.8 B.9 C.10 D.11【答案】A【解析】根据判别式的意义得到△=(﹣6)2﹣4m>0,然后解关于m的不等式,最后对各选项进行判断.根据题意得△=(﹣6)2﹣4m>0,解得m<9.【例题7】(2021山东东营)“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.【答案】见解析。【分析】(1)设亩产量的平均增长率为x,根据第三阶段水稻亩产量=第一阶段水稻亩产量×(1+增长率)2,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)利用第四阶段水稻亩产量=第三阶段水稻亩产量×(1+增长率),可求出第四阶段水稻亩产量,将其与1200公斤比较后即可得出结论.【解答】解:(1)设亩产量的平均增长率为x,依题意得:700(1+x)2=1008,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:亩产量的平均增长率为20%.(2)1008×(1+20%)=1209.6(公斤).∵1209.6>1200,∴他们的目标能实现.考点问题综合训练一、选择题1.(2021浙江温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x【答案】D【解析】可以根据乘法分配律先将2乘进去,再去括号.根据乘法分配律得:﹣(4x+2)=x,去括号得:﹣3x﹣2=x.2.(2020•重庆)解一元一次方程12(x+1)=1-1A.3(x+1)=1﹣2x B.2(x+1)=1﹣3x C.2(x+1)=6﹣3x D.3(x+1)=6﹣2x【答案】D【分析】根据等式的基本性质将方程两边都乘以6可得答案.【解析】方程两边都乘以6,得:3(x+1)=6﹣2x,3.(2020•内江)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是()A.12x=(x﹣5)﹣5 B.12x=(xC.2x=(x﹣5)﹣5 D.2x=(x+5)+5【答案】A【分析】设绳索长x尺,则竿长(x﹣5)尺,根据“将绳索对半折后再去量竿,就比竿短5尺”,即可得出关于x的一元一次方程,此题得解.【解析】设绳索长x尺,则竿长(x﹣5)尺,依题意,得:12x=(x4.(2021湖南益阳)解方程组时,若将①﹣②可得()A.﹣2y=﹣1 B.﹣2y=1 C.4y=1 D.4y=﹣1【答案】D【解析】①﹣②得出(2x+y)﹣(2x﹣3y)=3﹣4,再去括号,合并同类项即可.解:,﹣②,得4y=﹣1.5.(2021新疆)某校举行篮球赛,每场比赛都要分出胜负,每队胜一场得2分,负一场得1分.八年级一班在16场比赛中得26分.设该班胜x场,负y场,则根据题意,下列方程组中正确的是()A.B. C.D.【答案】D【解析】设该班胜x场,负y场,根据八年级一班在16场比赛中得26分,即可得出关于x,y的二元一次方程组,此题得解.解:设该班胜x场,负y场,依题意得:. 6.(2021广西来宾)《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若3人坐一辆车,则两辆车是空的;若2人坐一辆车,则9人需要步行,问:人与车各多少?设有x辆车,人数为y,根据题意可列方程组为()A.y=3x-2y=2x+9 B.y=3(x-2)y=2x+9【答案】B

【解析】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.设共有y人,x辆车,

依题意得:y=3(x-2)y=2x+9.

7.(2022湖南邵阳模拟)某出租车起步价所包含的路程为,超过的部分按每千米另收费.津津乘坐这种出租车走了,付了16元;盼盼乘坐这种出租车走了,付了28元.设这种出租车的起步价为元,超过后每千米收费元,则下列方程正确的是A. B. C. D.【答案】D【解析】设这种出租车的起步价为元,超过后每千米收费元,则所列方程组为8.(20122哈尔滨模拟)方程=的解为()A.x= B.x= C.x= D.x=【答案】C【解析】将分式方程化为,即可求解x=;同时要进行验根即可求解。=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x=【点拨】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.9.(2020•齐齐哈尔)若关于x的分式方程3xx-2A.m<﹣10 B.m≤﹣10 C.m≥﹣10且m≠﹣6 D.m>﹣10且m≠﹣6【答案】D【分析】分式方程去分母化为整式方程,表示出方程的解,由分式方程的解为正数求出m的范围即可.【解析】去分母得:3x=﹣m+5(x﹣2),解得:x=m+10由方程的解为正数,得到m+10>0,且m+10≠4,则m的范围为m>﹣10且m≠﹣6,10.(2020•长沙)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.400x-30=C.400x=500【答案】B 【分析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.【解析】设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:400x11.(2021新疆)一元二次方程x2﹣4x+3=0的解为()A.x1=﹣1,x2=3 B.x1=1,x2=3 C.x1=1,x2=﹣3 D.x1=﹣1,x2=﹣3【答案】B【解析】利用因式分解法求解即可.∵x2﹣4x+3=0,∴(x﹣1)(x﹣3)=0,则x﹣1=0或x﹣3=0,解得x1=1,x2=3.12.(2021江苏盐城)设x1、x2是一元二次方程x2﹣2x﹣3=0的两个根,则x1+x2的值为()A.﹣2 B.﹣3 C.2 D.3【答案】C【解析】根据一元二次方程的根与系数的关系x1+x2=﹣可以直接求得x1+x2的值.∵一元二次方程x2﹣2x﹣3=0的一次项系数是a=1,二次项系数b=2,∴由韦达定理,得x1+x2=2.13.(2020贵州黔西南)已知关于x的一元二次方程(m-1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2 B.m≤2 C.m<2且m≠1 D.m≤2且m≠1【答案】D【解析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围.解:因为关于x的一元二次方程x2-2x+m=0有实数根,所以b2-4ac=22-4(m-1)×1≥0,解得m≤2.又因为(m-1)x2+2x+1=0是一元二次方程,所以m-1≠0.综合知,m的取值范围是m≤2且m≠1,因此本题选D.【点拨】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式△≥0,找出关于m的一元一次不等式组是解题的关键.14.(2020•衡阳)如图,学校课外生物小组的试验园地的形状是长35米、宽20米的矩形.为便于管理,要在中间开辟一横两纵共三条等宽的小道,使种植面积为600平方米,则小道的宽为多少米?若设小道的宽为x米,则根据题意,列方程为()A.35×20﹣35x﹣20x+2x2=600 B.35×20﹣35x﹣2×20x=600 C.(35﹣2x)(20﹣x)=600 D.(35﹣x)(20﹣2x)=600【答案】C【解析】若设小道的宽为x米,则阴影部分可合成长为(35﹣2x)米,宽为(20﹣x)米的矩形,利用矩形的面积公式,即可得出关于x的一元二次方程,此题得解.依题意,得:(35﹣2x)(20﹣x)=600.二、填空题1.(2021浙江绍兴)我国明代数学读本《算法统宗》有一道题,其题意为:客人一起分银子,若每人7两;若每人9两,则差8两.银子共有两.【答案】46【解析】通过设两个未知数,可以列出银子总数相等的二元一次方程组,本题得以解决.设有x人,银子y两,由题意得:,解得.2.(2020•岳阳)我国古代数学名著《九章算术》上有这样一个问题:“今有醇酒一斗,直钱五十;行酒一斗,直钱一十.今将钱三十,得酒二斗.问醇、行酒各得几何?”其大意是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱.现用30钱,买得2斗酒.问醇酒、行酒各能买得多少?设醇酒为x斗,行酒为y斗,根据题意,可列方程组为.【答案】x+y=250x+10y=30【分析】根据“现用30钱,买得2斗酒”,即可得出关于x,y的二元一次方程组,此题得解.【解析】依题意,得:x+y=250x+10y=30故答案为:x+y=250x+10y=303.(2021齐齐哈尔)若关于x的分式方程的解为正数,则m的取值范围是_________.【答案】且【解析】先利用m表示出x的值,再由x为正数求出m的取值范围即可.方程两边同时乘以得:,解得:,∵x为正数,∴,解得,∵,∴,即,∴m的取值范围是且4.(2021山东东营)某地积极响应“把绿水青山变成金山银山,用绿色杠杆撬动经济转型”发展理念,开展荒山绿化,打造美好家园,促进旅游发展.某工程队承接了90万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了任务.设原计划每天绿化的面积为x万平方米,则所列方程为.【答案】﹣=30.【解析】设原计划每天绿化的面积为x万平方米,则实际每天绿化的面积为(1+25%)x万平方米,根据工作时间=工作总量÷工作效率,结合实际比原计划提前30天完成了任务,即可得出关于x的分式方程,此题得解.设原计划每天绿化的面积为x万平方米,则实际每天绿化的面积为(1+25%)x万平方米,依题意得:﹣=30.5.(2022湖北黄石模拟)分式方程:﹣=1的解为.【答案】x=﹣1【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得:4﹣x=x2﹣4x,即x2﹣3x﹣4=0,解得:x=4或x=﹣1,经检验x=4是增根,分式方程的解为x=﹣16.(2022四川巴中模拟)若关于x的分式方程+=2m有增根,则m的值为.【答案】1【解析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x﹣2=0,得到x=2,然后代入化为整式方程的方程算出m的值.方程两边都乘x﹣2,得x﹣2m=2m(x﹣2)∵原方程有增根,∴最简公分母x﹣2=0,解得x=2,当x=2时,m=1故m的值是17.(2021湖北黄冈)若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的值可以是.(写出一个即可)【答案】-1【解析】根据方程的系数结合根的判别式△>0,可得出关于m的一元一次不等式,解之即可得出m的取值范围,在m的范围内选一个即可.解:∵关于x的一元二次方程x2﹣2x+m=2有两个不相等的实数根,∴△=(﹣2)2﹣8×1•m=4﹣7m>0,解得:m<1,取m=﹣2,故答案为:﹣1.8.(2021长春)若关于x的一元二次方程3x2﹣2x﹣k=0有两个相等的实数根,则k的值为.【答案】.【解析】利用判别式的意义得到△=(﹣2)2﹣4×3×(﹣k)=0,然后解关于k的方程即可.∵一元二次方程3x2﹣2x﹣k=0有两个相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×3×(﹣k)=0,解得k=.9.(2020•天水)一个三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,则该三角形的周长为.【答案】13【分析】先利用因式分解法解方程x2﹣8x+12=0,然后根据三角形的三边关系得出第三边的长,则该三角形的周长可求.【解析】∵x2﹣8x+12=0,∴(x﹣2)(x﹣6)=0,∴x1=2,x2=6,∵三角形的两边长分别为2和5,第三边长是方程x2﹣8x+12=0的根,2+2<5,2+5>6,∴三角形的第三边长是6,∴该三角形的周长为:2+5+6=13.10.(2020•扬州)方程(x+1)2=9的根是.【答案】x1=2,x2=﹣4.【分析】根据直接开平方法的步骤先把方程两边分别开方,再进行计算即可.【解析】(x+1)2=9,x+1=±3,x1=2,x2=﹣4.11.(2021江苏盐城)劳动教育已纳入人才培养全过程,某学校加大投入,建设校园农场,该农场一种作物的产量两年内从300千克增加到363千克.设平均每年增产的百分率为x,则可列方程为.【答案】300(1+x)2=363.【解析】可先表示出第一年的产量,那么第二年的产量×(1+增长率)=363,把相应数值代入即可求解.第一年的产量为300×(1+x),第二年的产量在第一年产量的基础上增加x,为300×(1+x)×(1+x),则列出的方程是300(1+x)2=363.故答案是:300(1+x)2=363.三、解答题1.(2021哈尔滨)方程=的解为()A.x=5 B.x=3 C.x=1 D.x=2【答案】A【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.去分母得:3x﹣1=2(2+x),去括号得:3x﹣1=4+2x,移项合并得:x=5,检验:当x=5时,(2+x)(3x﹣1)≠0,∴分式方程的解为x=5.2.解方程:(1)4﹣x=3(2﹣x);(2).【答案】见解析。【解析】(1)去括号得:4﹣x=6﹣3x,移项得:﹣x+3x=6﹣4,合并得:2x=2,系数化为1得:x=1.(2)去分母得:5(x﹣1)﹣2(x+1)=2,去括号得:5x﹣5﹣2x﹣2=2,移项得:5x﹣2x=2+5+2,合并得:3x=9, 系数化1得:x=3.3.(2020•杭州)以下是圆圆解方程x+12解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.【答案】见解析。【解析】直接利用一元一次方程的解法进而分析得出答案.圆圆的解答过程有错误,正确的解答过程如下:去分母,得:3(x+1)﹣2(x﹣3)=6.去括号,得3x+3﹣2x+6=6.移项,合并同类项,得x=﹣3.4.(2020•连云港)解方程组2x+4y=5【答案】见解析。【解析】2x+4y=5把②代入①,得2(1﹣y)+4y=5,解得y=3把y=32代入②,得x∴原方程组的解为x=-5.(2021呼和浩特)解方程组.【答案】见解析。【解析】先把原方程组化简,然后利用加减消元法解方程组.原方程整理为,①×12﹣②得:13x=3900,解得x=300,把x=300代入①得:y=400,∴方程组的解为.6.(2020•江西)放学后,小贤和小艺来到学校附近的地摊上购买一种特殊型号的笔芯和卡通笔记本,这种笔芯每盒10支,如果整盒买比单支买每支可优惠0.5元.小贤要买3支笔芯,2本笔记本需花费19元;小艺要买7支笔芯,1本笔记本需花费26元.(1)求笔记本的单价和单独购买一支笔芯的价格;(2)小贤和小艺都还想再买一件单价为3元的小工艺品,但如果他们各自为要买的文具付款后,只有小贤还剩2元钱.他们要怎样做才能既买到各自的文具,又都买到小工艺品,请通过运算说明.【答案】见解析。【解析】(1)设笔记本的单价为x元,单独购买一支笔芯的价格为y元,依题意,得:2x+3y=19x+7y=26解得:x=5y=3答:笔记本的单价为5元,单独购买一支笔芯的价格为3元.(2)小贤和小艺带的总钱数为19+2+26=47(元).两人合在一起购买所需费用为5×(2+1)+(3﹣0.5)×10=40(元).∵47﹣40=7(元),3×2=6(元),7>6,∴他们合在一起购买,才能既买到各自的文具,又都买到小工艺品.7.(2022年山东烟台模拟)亚洲文明对话大会召开期间,大批的大学生志愿者参与服务工作.某大学计划组织本校全体志愿者统一乘车去会场,若单独调配36座新能源客车若干辆,则有2人没有座位;若只调配22座新能源客车,则用车数量将增加4辆,并空出2个座位.(1)计划调配36座新能源客车多少辆?该大学共有多少名志愿者?(2)若同时调配36座和22座两种车型,既保证每人有座,又保证每车不空座,则两种车型各需多少辆?【答案】见解析。【解析】(1)设计划调配36座新能源客车x辆,该大学共有y名志愿者,则需调配22座新能源客车(x+4)辆,依题意,得:,解得:.答:计划调配36座新能源客车6辆,该大学共有218名志愿者.(2)设需调配36座客车m辆,22座客车n辆,依题意,得:36m+22n=218,∴n=.又∵m,n均为正整数,∴.答:需调配36座客车3辆,22座客车5辆.8.(2021吉林长春)为助力乡村发展,某购物平台推出有机大米促销活动,其中每千克有机大米的售价仅比普通大米多2元,用420元购买的有机大米与用300元购买的普通大米的重量相同.求每千克有机大米的售价为多少元?【答

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论