




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
考点15圆课标对考点的要求对圆问题,中考命题需要满足下列要求:(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念;探索并了解点与圆的位置关系。(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。(3)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径所对的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。(4)知道三角形的内心和外心。(5)了解直线和圆的位置关系,掌握切线的概念,探索切线与过切点的半径的关系,会用三角尺过圆上一点画圆的切线。(6)探索并证明切线长定理:过圆外一点所画的圆的两条切线长相等。(7)会计算圆的弧长、扇形的面积。(8)了解正多边形的概念及正多边形与圆的关系。重要考点知识解读一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理:一条弧所对的圆周角等于它所对的圆心角的一半.2.推论:1)在同圆或等圆中,同弧或等弧所对的圆周角相等.2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>rd=rd<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.八、正多边形的有关概念正多边形中心:正多边形的外接圆的圆心叫做这个正多边形的中心.正多边形半径:正多边形外接圆的半径叫做正多边形半径.正多边形中心角:正多边形每一边所对的圆心角叫做正多边形中心角.正多边形边心距:正多边形中心到正多边形的一边的距离叫做正多边形的边心距.九、与圆有关的计算公式1.求解圆的周长和面积的公式设圆的周长为r,则:(1)求圆的直径公式d=2r(2)求圆的周长公式c=2πr(3)求圆的面积公式s=πr22.弧长和扇形面积的计算:扇形的弧长l=;扇形的面积S==.3.圆锥与侧面展开图(1)圆锥侧面展开图是一个扇形,扇形的半径等于圆锥的母线,扇形的弧长等于圆锥的底面周长.(2)若圆锥的底面半径为r,母线长为l,则这个扇形的半径为l,扇形的弧长为2πr,圆锥的侧面积为S圆锥侧=.圆锥的表面积:S圆锥表=S圆锥侧+S圆锥底=πrl+πr2=πr·(l+r).在求不规则图形的面积时,注意利用割补法与等积变化方法归为规则图形,再利用规则图形的公式求解.重要问题解题思维方法总结一、解题要领1.判定切线的方法(1)若切点明确,则“连半径,证垂直”。常见手法有全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。常见手法有角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.2.与圆有关的计算计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。其中重要而常见的数学思想方法有:(1)构造思想:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。二、攻克典型基本模型图是解决圆的所有难题的宝剑类型1图形:(1)如图1,AB是⊙O的直径,点E、C是⊙O上的两点.基本结论有:在“AC平分∠BAE”;“AD⊥CD”;“DC是⊙O的切线”三个论断中,知二推一。如图2、3,DE等于弓形BCE的高;DC=AE的弦心距OF(或弓形BCE的半弦EF)。(3)如图(4):若CK⊥AB于K,则:①CK=CD;BK=DE;CK=BE=DC;AE+AB=2BK=2AD;②⊿ADC∽⊿ACBAC2=AD•AB(4)在(1)中的条件①、②、③中任选两个条件,当BG⊥CD于E时(如图5),则:①DE=GB;②DC=CG;③AD+BG=AB;④AD•BG==DC2类型2图形:如图:Rt⊿ABC中,∠ACB=90°。点O是AC上一点,以OC为半径作⊙O交AC于点E,基本结论有:(1)在“BO平分∠CBA”;“BO∥DE”;“AB是⊙O的切线”;“BD=BC”。四个论断中,知一推三。(2)①G是⊿BCD的内心;②;③⊿BCO∽⊿CDEBO•DE=CO•CE=CE2;(3)在图(1)中的线段BC、CE、AE、AD中,知二求四。(4)如图(3),若①BC=CE,则:②==tan∠ADE;③BC:AC:AB=3:4:5;(在①、②、③中知一推二)④设BE、CD交于点H,,则BH=2EH类型3图形:如图:Rt⊿ABC中,∠ABC=90°,以AB为直径作⊙O交AC于D,基本结论有:如图:(1)DE切⊙OE是BC的中点;(2)若DE切⊙O,则:①DE=BE=CE;②D、O、B、E四点共圆∠CED=2∠A③CD·CA=4BE2,图形特殊化:在(1)的条件下如图:DE∥AB⊿ABC、⊿CDE是等腰直角三角形;如图:若DE的延长线交AB的延长线于点F,若AB=BF,则:① ;②类型4图形:如图,⊿ABC中,AB=AC,以AB为直径作⊙O,交BC于点D,交AC于点F,基本结论有:(1)DE⊥ACDE切⊙O;(2)在DE⊥AC或DE切⊙O下,有:①⊿DFC是等腰三角形;②EF=EC;③D是的中点。④与基本图形1的结论重合。⑤连AD,产生母子三角形。类型5图形:以直角梯形ABCD的直腰为直径的圆切斜腰于E,基本结论有:(1)如图1:①AD+BC=CD;②∠COD=∠AEB=90°;③OD平分∠ADC(或OC平分∠BCD);(注:在①、②、③及④“CD是⊙O的切线”四个论断中,知一推三)④AD·BC=2=R2;(2)如图2,连AE、CO,则有:CO∥AE,CO•AE=2R2(与基本图形2重合)(3)如图3,若EF⊥AB于F,交AC于G,则:EG=FG.类型6图形:如图:直线PR⊥⊙O的半径OB于E,PQ切⊙O于Q,BQ交直线PQ于R。基本结论有:(1)PQ=PR(⊿PQR是等腰三角形);(2)在“PR⊥OB”、“PQ切⊙O”、“PQ=PR”中,知二推一(3)2PR·RE=BR·RQ=BE·2R=AB2类型7图形:如图,⊿ABC内接于⊙O,I为△ABC的内心。基本结论有:(1)如图1,①BD=CD=ID;②DI2=DE·DA;③∠AIB=90°+∠ACB;(2)如图2,若∠BAC=60°,则:BD+CE=BC.类型8图形:已知,AB是⊙O的直径,C是中点,CD⊥AB于D。BG交CD、AC于E、F。基本结论有:(1)CD=BG;BE=EF=CE;GF=2DE(反之,由CD=BG或BE=EF可得:C是中点)(2)OE=AF,OE∥AC;⊿ODE∽⊿AGF(3)BE·BG=BD·BA(4)若D是OB的中点,则:①⊿CEF是等边三角形;②中考典例解析【例题1】(2021重庆)如图,AB是⊙O的直径,AC,BC是⊙O的弦,若∠A=20°,则∠B的度数为()A.70° B.90° C.40° D.60°【例题2】(2021山东济宁)如图,正五边形ABCDE中,∠CAD的度数为()A.72° B.45° C.36° D.35°【例题3】(2021山东济宁)如图,△ABC中,∠ABC=90°,AB=2,AC=4,点O为BC的中点,以O为圆心,以OB为半径作半圆,交AC于点D,则图中阴影部分的面积是.【例题4】(2021大连)如图1,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图2,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.考点问题综合训练一、选择题1.(2021辽宁营口)如图,⊙O中,点C为弦AB中点,连接OC,OB,∠COB=56°,点D是上任意一点,则∠ADB度数为()A.112° B.124° C.122° D.134°2.(2021浙江绍兴)如图,正方形ABCD内接于⊙O,点P在上,∠BPC=()A.30° B.45° C.60° D.90°3.(2021云南)如图,等边△ABC的三个顶点都在⊙O上,AD是⊙O的直径.若OA=3,则劣弧BD的长是()A. B.π C. D.2π4.(2021四川泸州)如图,⊙O的直径AB=8,AM,BN是它的两条切线,DE与⊙O相切于点E,并与AM,BN分别相交于D,C两点,BD,OC相交于点F,若CD=10,则BF的长是()A. B. C. D.5.(2020•黔东南州)如图,⊙O的直径CD=20,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长为()A.8 B.12 C.16 D.26.(2020•营口)如图,AB为⊙O的直径,点C,点D是⊙O上的两点,连接CA,CD,AD.若∠CAB=40°,则∠ADC的度数是()A.110° B.130° C.140° D.160°7.(2020•湘西州)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D.下列结论不一定成立的是()A.△BPA为等腰三角形 B.AB与PD相互垂直平分 C.点A、B都在以PO为直径的圆上 D.PC为△BPA的边AB上的中线8.(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75° B.70° C.65° D.60°9.(2020•苏州)如图,在扇形OAB中,已知∠AOB=90°,OA,过AB的中点C作CD⊥OA,CE⊥OB,垂足分别为D、E,则图中阴影部分的面积为()A.π﹣1 B.1 C.π D.10.(2020•黔东南州)如图,正方形ABCD的边长为2,O为对角线的交点,点E、F分别为BC、AD的中点.以C为圆心,2为半径作圆弧BD,再分别以E、F为圆心,1为半径作圆弧BO、OD,则图中阴影部分的面积为()A.π﹣1 B.π﹣2 C.π﹣3 D.4﹣π11.(2020•金华)如图,⊙O是等边△ABC的内切圆,分别切AB,BC,AC于点E,F,D,P是DF上一点,则∠EPF的度数是()A.65° B.60° C.58° D.50°二、填空题1.(2021江西)如图,在边长为6的正六边形ABCDEF中,连接BE,CF,其中点M,N分别为BE和CF上的动点.若以M,N,D为顶点的三角形是等边三角形,且边长为整数,则该等边三角形的边长为.2.(2021重庆)如图,在菱形ABCD中,对角线AC=12,BD=16,分别以点A,B,C,D为圆心,AB的长为半径画弧,与该菱形的边相交,则图中阴影部分的面积为.(结果保留π)3.(2021内蒙古通辽)如图,AB是⊙O的弦,AB=2,点C是⊙O上的一个动点,且∠ACB=60°,若点M,N分别是AB,BC的中点,则图中阴影部分面积的最大值是.4.(2020•黑龙江)如图,AD是△ABC的外接圆⊙O的直径,若∠BCA=50°,则∠ADB=°.5.(2020•天水)如图所示,若用半径为8,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥的底面半径是.6.(2020•苏州)如图,已知AB是⊙O的直径,AC是⊙O的切线,连接OC交⊙O于点D,连接BD.若∠C=40°,则∠B的度数是°.7.(2020•重庆)如图,在边长为2的正方形ABCD中,对角线AC的中点为O,分别以点A,C为圆心,以AO的长为半径画弧,分别与正方形的边相交,则图中的阴影部分的面积为.(结果保留π)8.(2020•荆门)如图所示的扇形AOB中,OA=OB=2,∠AOB=90°,C为上一点,∠AOC=30°,连接BC,过C作OA的垂线交AO于点D,则图中阴影部分的面积为.9.(2020•鄂州)用一个圆心角为120°,半径为4的扇形制作一个圆锥的侧面,则此圆锥的底面圆的半径为.10.(2020•泰安)如图,点O是半圆圆心,BE是半圆的直径,点A,D在半圆上,且AD∥BO,∠ABO=60°,AB=8,过点D作DC⊥BE于点C,则阴影部分的面积是.11.(2020•台州)如图,在△ABC中,D是边BC上的一点,以AD为直径的⊙O交AC于点E,连接DE.若⊙O与BC相切,∠ADE=55°,则∠C的度数为.12.(2020•福建)一个扇形的圆心角是90°,半径为4,则这个扇形的面积为.(结果保留π)13.(2020•南京)如图,在边长为2cm的正六边形ABCDEF中,点P在BC上,则△PEF的面积为cm2.三、解答题1.(2021山东济宁)如图,点C在以AB为直径的⊙O上,点D是BC的中点,连接OD并延长交⊙O于点E,作∠EBP=∠EBC,BP交OE的延长线于点P.(1)求证:PB是⊙O的切线;(2)若AC=2,PD=6,求⊙O的半径.2.(2021云南)如图,AB是⊙O的直径,点C是⊙O上异于A、B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湘教版地理同步习题:第章区域产业活动测试题
- 《建筑材料应用指南》课件
- 大班语言活动《反义词趣味探索》
- 《心脏起搏与除颤技术》课件
- 《电动车发展史》课件
- 《人际沟通技巧》课件
- 《绘画基础课件》课件
- 《守护健康:心脑血管疾病防治课件》
- 《腹泻呕吐病案探讨》课件
- 招聘助理岗位培训大纲
- 2025年二级注册建筑师《建筑经济、施工与设计业务管理》考试真题卷(附解析)
- 铁塔施工安装技术方案
- 2025陕西烟草专卖局招聘42人易考易错模拟试题(共500题)试卷后附参考答案
- 光谱分析在大气污染物成分识别中的应用研究
- 2025年高中生物学业水平考试知识点归纳总结(复习必背)
- 野生菌蘑菇的试题及答案
- 电梯维保考试题及答案
- 企业技术考核试题及答案
- 2025年广东省外语艺术职业学院单招综合素质考试题库附答案
- 室间隔缺损的术后护理
- Unit 5 Here and Now SectionB Project 教学设计 2024-2025学年人教版(2024)七年级英语下册
评论
0/150
提交评论