考点24坐标与图形运动_第1页
考点24坐标与图形运动_第2页
考点24坐标与图形运动_第3页
考点24坐标与图形运动_第4页
考点24坐标与图形运动_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点24坐标与图形运动课标对考点的要求对坐标与图形运动问题,中考命题需要满足下列要求:(1)在直角坐标系中,以坐标轴为对称轴,能写出一个已知顶点坐标的多边形的对称图形的顶点坐标,并知道对应顶点坐标之间的关系。(2)在直角坐标系中,能写出一个已知顶点坐标的多边形沿坐标轴方向平移后图形的顶点坐标,并知道对应顶点坐标之间的关系。(3)在直角坐标系中,探索并了解将一个多边形依次沿两个坐标轴方向平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。(4)在直角坐标系中,探索并了解将一个多边形的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。重要考点知识解读1.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).2.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).重要问题解题思维方法总结1.图形在坐标系中的平移图形的平移性质:①平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动;②连接各组对应点的线段平行(或在同一直线上)且相等.2.图形在坐标系中的旋转图形的旋转性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等;④图形的旋转是由旋转中心和旋转的角度和方向决定.3.点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.中考典例解析【例题1】(2021四川凉山)在平面直角坐标系中,将线段AB平移后得到线段A'B',点A(2,1)(﹣2,﹣3),则点B(﹣2,3)的对应点B'的坐标为()A.(6,1) B.(3,7) C.(﹣6,﹣1) D.(2,﹣1)【答案】C【解析】根据点A到A′确定出平移规律,再根据平移规律列式计算即可得到点B′的坐标.∵A(2,1)平移后得到点A′的坐标为(﹣2,-3)∴向下平移了4个单位,向左平移了4个单位,∴B(﹣2,3)的对应点B'的坐标为(﹣2﹣4,3-4)即(﹣6,﹣1).【例题2】(2021大连)在平面直角坐标系中,将点P(﹣2,3)向右平移4个单位长度,得到点P′,则点P′的坐标是.【答案】(2,3).【解析】利用“横坐标,右移加,左移减;纵坐标,上移加,下移减”的规律求解可得.点P(﹣2,3)向右平移4个单位长度后得到点P′的坐标为(﹣2+4,3),即(2,3).【例题3】(2021浙江温州)如图中4×4与6×6的方格都是由边长为1的小正方形组成.图1是绘成的七巧板图案,它由7个图形组成,请按以下要求选择其中一个并在图2、图3中画出相应的格点图形(顶点均在格点上).(1)选一个四边形画在图2中,使点P为它的一个顶点,并画出将它向右平移3个单位后所得的图形.(2)选一个合适的三角形,将它的各边长扩大到原来的倍,画在图3中.【解析】(1)直接将其中任意四边形向右平移3个单位得出符合题意的图形;(2)直接将其中任意一三角形边长扩大为原来的倍,即可得出所求图形.解:(1)如图2所示,即为所求;(2)如图3所示,即为所求.【例题4】(2021浙江嘉兴)如图,在直角坐标系中,△ABC与△ODE是位似图形,则它们位似中心的坐标是.【答案】(4,2).【解析】根据图示,对应点的连线都经过同一点,该点就是位似中心.如图,点G(4,2)即为所求的位似中心.【例题5】(2021山东菏泽)如图,一次函数y=x与反比例函数y=(x>0)的图象交于点A,过点A作AB⊥OA,交x轴于点B;作BA1∥OA,交反比例函数图象于点A1;过点A1作A1B1⊥A1B交x轴于点B;再作B1A2∥BA1,交反比例函数图象于点A2,依次进行下去,…,则点A2021的横坐标为.【答案】+.【解析】由一次函数y=x与反比例函数y=(x>0)的图象交于点A,可得A(1,1);易得△OAB是等腰直角三角形,则OB=2;分别过点A,A1,A2,作x轴的垂线,垂足分别为C,D,E,则△ABD是等腰直角三角形,设BD=m,则A1D=m,则A1(m+2,m),点A1在反比例函数上,可得m的值,求出点A1的坐标,同理可得A2的坐标,以此类推,可得结论.如图,分别过点A,A1,A2,作x轴的垂线,垂足分别为C,D,E,∵一次函数y=x与反比例函数y=(x>0)的图象交于点A,∴联立,解得A(1,1),∴AC=OC=1,∠AOC=45°,∵AB⊥OA,∴△OAB是等腰直角三角形,∴OB=2OC=2,∵A1B∥OA,∴∠A1BD=45°,设BD=m,则A1D=m,∴A1(m+2,m),∵点A1在反比例函数y=上,∴m(m+2)=1,解得m=﹣1+,(m=﹣1﹣,负值舍去),∴A1(+1,﹣1),∵A1B1⊥A1B,∴BB1=2BD=2﹣2,∴OB1=2.∵B1A2∥BA1,∴∠A2B1E=45°,设B1E=t,则A2E=t,∴A2(t+2,t),∵点A2在反比例函数y=上,∴t(t+2)=1,解得t=﹣+,(t=﹣﹣,负值舍去),∴A2(,﹣),同理可求得A3(2+,2﹣),以此类推,可得点A2021的横坐标为+.故答案为:+.【例题6】(2021山东烟台)如图,在直角坐标系中,菱形ABCD的顶点A,B,C在坐标轴上,若点B的坐标为(﹣1,0),∠BCD=120°,则点D的坐标为()A.(2,2) B.(,2) C.(3,) D.(2,)【答案】D【解析】根据直角三角形的性质得出OB,OA的长,利用菱形的性质得出点的坐标即可.∵菱形ABCD,∠BCD=120°,∴∠ABC=60°,∵B(﹣1,0),∴OB=1,OA=,AB=2,∴A(0,),∴BC=AD=2,∴C(1,0),D(2,).考点问题综合训练一、选择题1.(2021山东东营)如图,△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的横坐标是a,则点B的对应点B′的横坐标是()A.﹣2a+3 B.﹣2a+1 C.﹣2a+2 D.﹣2a﹣2【答案】A【解析】设点B′的横坐标为x,根据数轴表示出BC、B′C的横坐标的距离,再根据位似比列式计算即可.设点B′的横坐标为x,则B、C间的横坐标的长度为a﹣1,B′、C间的横坐标的长度为﹣x+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(a﹣1)=﹣x+1,解得:x=﹣2a+32.(2021四川资阳)已知A、B两点的坐标分别为(3,﹣4)、(0,﹣2),线段AB上有一动点M(m,n),过点M作x轴的平行线交抛物线y=a(x﹣1)2+2于P(x1,y1)、Q(x2,y2)两点.若x1<m≤x2,则a的取值范围为()A.﹣4≤a<﹣ B.﹣4≤a≤﹣ C.﹣≤a<0 D.﹣<a<0【答案】C【解析】如图,由题意,抛物线的开口向下,a<0.求出抛物线经过点A时a的值即可.如图,由题意,a<0.当抛物线y=a(x﹣1)5+2经过点A(3,﹣5)时,∴a=﹣,观察图象可知,当抛物线与线段AB没有交点或经过点A时,∴﹣≤a<03.(2020成都)在平面直角坐标系中,将点向下平移2个单位长度得到的点的坐标是()A. B. C. D.【答案】A【解析】根据点的坐标平移规律“左减右加,下减上加”,即可解答.将点P向下平移2个单位长度所得到的点坐标为,即,【点拨】此题主要考查了坐标与图形的变化,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.4.(2021湖北宜昌)如图,在平面直角坐标系中,将点A(﹣1,2)向右平移2个单位长度得到点B,则点B关于x轴的对称点C的坐标是.【答案】(1,﹣2).【解析】直接利用平移的性质得出B点坐标,再利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数,即可得出答案.∵将点A(﹣1,2)向右平移2个单位长度得到点B,∴B(1,2),则点B关于x轴的对称点C的坐标是(1,﹣2).5.(2020·山西)如图,将一个含角的直角三角尺AOB放在平面直角坐标系中,两条直角边分别与坐标轴重叠.已知,,点D为斜边AB的中点,现将三角尺AOB绕点O顺时针旋转,则点D的对应点的坐标为()A. B. C. D.【答案】D【解析】先利用直角三角形的性质、勾股定理分别求出OB、OA的长,再根据旋转的性质可得的长,从而可得点的坐标,然后根据中点坐标公式即可得.在中,,,,由旋转的性质得:,点为斜边的中点,将三角尺AOB绕点O顺时针旋转,点A的对应点落在x轴正半轴上,点B的对应点落在y轴负半轴上,,又点为斜边的中点,,即,故选:D.6.(2020年浙江台州)如图,把△ABC先向右平移3个单位,再向上平移2个单位得到△DEF,则顶点C(0,-1)对应点的坐标为()A.(0,0)B.(1,2)C.(1,3)D.(3,1)【答案】D【解析】先找到顶点C的对应点为F,再根据直角坐标系的特点即可得到坐标.∵顶点C的对应点为F,由图可得F的坐标为(3,1)7.如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3C.4D.5【答案】A.【解析】直接利用平移中点的变化规律求解即可.由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.8.如图,将△PQR向右平移2个单位长度,再向下平移3个单位长度,则顶点P平移后的坐标是()A.(﹣2,﹣4)B.(﹣2,4)C.(2,﹣3)D.(﹣1,﹣3)【答案】A.【解析】本题考查了图形的平移变换,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.直接利用平移中点的变化规律求解即可.由题意可知此题规律是(x+2,y﹣3),照此规律计算可知顶点P(﹣4,﹣1)平移后的坐标是(﹣2,﹣4).二、填空题1.(2021山东临沂)在平面直角坐标系中,平行四边形ABCD的对称中心是坐标原点,顶点A、B的坐标分别是(﹣1,1)、(2,1),将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是.【答案】(4,﹣1).【解析】由题意A,C关于原点对称,求出点C的坐标,再利用平移的性质求出点C1的坐标可得结论.∵平行四边形ABCD的对称中心是坐标原点,∴点A,点C关于原点对称,∵A(﹣1,1),∴C(1,﹣1),∴将平行四边形ABCD沿x轴向右平移3个单位长度,则顶点C的对应点C1的坐标是(4,﹣1).2.(2021浙江金华)如图,在平面直角坐标系中,有一只用七巧板拼成的“猫”,三角形①的边BC及四边形②的边CD都在x轴上,“猫”耳尖E在y轴上.若“猫”尾巴尖A的横坐标是1,则“猫”爪尖F的坐标是.【答案】(﹣﹣,+).【解析】如图,作AH⊥x轴于H,过点F作FJ⊥y轴于J交PQ于K,延长PQ交OB于T.设大正方形的边长为4a,则OC=a,CD=2a,根据点A的横坐标为1,构建方程求出a,解直角三角形求出FJ,KT,可得结论.解:如图,作AH⊥x轴于H,过点F作FJ⊥y轴于J交PQ于K,延长PQ交OB于T.设大正方形的边长为4a,则OC=a,CD=2a,在Rt△ADH中,∠ADH=45°,∴AH=AD=a,∴OH=4a,∵点A的横坐标为1,∴4a=1,∴a=,在Rt△FPQ中,PF=FQ=2a=,∴PQ=PF=,∵FK⊥PQ,∴PK=KQ,∴FK=PK=QK=,∵KJ=,PT=1+(﹣)=+,∴FJ=+,KT=PT﹣PK=+﹣=+,∴F(﹣﹣,+).故答案为:(﹣﹣,+).3.(2020•武威)如图,在平面直角坐标系中,△OAB的顶点A,B的坐标分别为(3,),(4,0).把△OAB沿x轴向右平移得到△CDE,如果点D的坐标为(6,),则点E的坐标为.【答案】(7,0).【解析】利用平移的性质解决问题即可.∵A(3,3),D(6,3),∴点A向右平移3个单位得到D,∵B(4,0),∴点B向右平移3个单位得到E(7,0)。4.(2020·广东广州)如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为9,则点的坐标为_______.【答案】(4,3)【解析】过点A作AH⊥x轴于点H,∵A(1,3),∴AH=3,由平移得AB∥CD,AB=CD,∴四边形ABDC是平行四边形,∴AC=BD,∵,∴BD=3,∴AC=3,∴C(4,3)故答案为:(4,3).5.(2020·柳州)点A的坐标是(2,﹣3),将点A向上平移4个单位长度得到点A',则点A'的坐标为_____.【答案】(2,1).【分析】将点A的纵坐标加4,横坐标不变,即可得出点A′的坐标.【详解】解:将点A(2,﹣3)向上平移4个单位得到点A′,则点A′的坐标是(2,﹣3+4),即(2,1).故答案为(2,1).【点睛】本题考查坐标与图形变化-平移,掌握平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.6.(2020·成都)先将一矩形置于直角坐标系中,使点A与坐标系的原点重合,边,分别落在x轴、y轴上(如图1),再将此矩形在坐标平面内按逆时针方向绕原点旋转30°(如图2),若,,则图1和图2中点B点的坐标为_________,点C的坐标_________.【答案】【解析】∵AB=4,在x轴正半轴上,∴图1中B坐标为(4,0),

在图2中过B作BE⊥x轴于点E,那么OE=4×cos30°=2,BE=2,在图2中B点的坐标为(2,2);

易知图1中点C的坐标为(4,3),

在图2中,设CD与y轴交于点M,作CN⊥y轴于点N,那么∠DOM=30°,OD=3,

∴DM=3•tan30°=,OM=3÷cos30°=2,那么CM=4-,易知∠NCM=30°,

∴MN=CM•sin30°=,CN=CM•cos30°=,

则ON=OM+MN=,∴图2中C点的坐标为(,).【点睛】此题主要考查了旋转性质的应用,旋转前后对应角的度数不变,对应线段的长度不变,注意构造直角三角形求解.7.(2020·黑龙江齐齐哈)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是_____.【答案】22020【解析】∵点A1(0,2),∴第1个等腰直角三角形的面积==2,∵A2(6,0),∴第2个等腰直角三角形的边长为=,∴第2个等腰直角三角形的面积==4=,∵A4(10,),∴第3个等腰直角三角形的边长为10−6=4,∴第3个等腰直角三角形的面积==8=,…则第2020个等腰直角三角形的面积是;故答案为:.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.8.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.【答案】(2,3).【解析】先写出点A的坐标为(6,3),横坐标保持不变,纵坐标分别变为原来的,即可判断出答案.点A变化前的坐标为(6,3),将横坐标保持不变,纵坐标分别变为原来的,则点A的对应点的坐标是(2,3),9.(2021贵州贵阳)如图,在平面直角坐标系中,菱形ABCD对角线的交点坐标是O(0,0),点B的坐标是(0,1),且BC=,则点A的坐标是.【答案】(2,0).【解析】根据菱形性质得OC的长,因而得点C的坐标,根据对称性质可得答案.∵四边形ABCD是菱形,∴∠BOC=90°,OC=OA,∵点B的坐标是(0,1),∴OB=1,在直角三角形BOC中,BC=,∴OC==2,∴点C的坐标(﹣2,0),∵OA与OC关于原点对称,∴点A的坐标(2,0).三、解答题1.如图,直角坐标系中,△ABC的顶点都在网格点上,其中,C点坐标为(1,2).(1)写出点A、B的坐标:A(,)、B(,)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(,)、B′(,)、C′(,).(3)△ABC的面积为.【答案】(1)A(2,﹣1)、B(4,3)(2)A′(0,0)、B′(2,4)、C′(﹣1,3).(3)5.【解析】A在第四象限,横坐标为正,纵坐标为负;B的第一象限,横纵坐标均为正;让三个点的横坐标减2,纵坐标加1即为平移后的坐标;△ABC的面积等于边长为3,4的长方形的面积减去2个边长为1,3和一个边长为2,4的直角三角形的面积,把相关数值代入即可求解.(1)写出点A、B的坐标:A(2,﹣1)、B(4,3)(2)将△ABC先向左平移2个单位长度,再向上平移1个单位长度,得到△A′B′C′,则A′B′C′的三个顶点坐标分别是A′(0,0)、B′(2,4)、C′(﹣1,3).(3)△ABC的面积=3×4﹣2××1×3﹣×2×4=5.2.如图所示的直角坐标系中,四边形ABCD各顶点的坐标分别为A(0,0)、B(9,0)、C(7,5)、D(2,7).求四边形ABCD的面积.【答案】四边形ABCD的面积为42平方单位.【解析】本题应利用分割法,把四边形分割成两个三角形加上一个梯形后再求面积.过D,C分别作DE,CF垂直于AB,E、F分别为垂足,则有:S=S△OED+SEFCD+S△CFB=×AE×DE+×(CF+DE)×EF+×FC×FB.=×2×7+×(7+5)×5+×2×5=42.故四边形ABCD的面积为42平方单位.3.已知点A(﹣1,﹣2),点B(1,4)(1)试建立相应的平面直角坐标系;(2)描出线段AB的中点C,并写出其坐标;(3)将线段AB沿水平方向向右平移3个单位长度得到线段A1B1,写出线段A1B1两个端点及线段中点C1的坐标.【答案】(1)坐标系如图:(2)C(0,1);(3)平移规律是(x+3,y),所以A1(2,﹣2),B1(4,4),C1(3,1).【解析】此题主要考查图形的平移及平移特征.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.画出平面直角坐标系后描出线段AB的中点C,根据平移的规律求出线段A1B1两个端点及线段中点C1的坐标为A1(2,﹣2),B1(4,4),C1(3,1).4.已知:A(0,1),B(2,0),C(4,3)(1)求△ABC的面积;(2)设点P在坐标轴上,且△ABP与△ABC的面积相等,求点P的坐标.【答案】(1)4;(2)P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).【解析】本题考查了坐标与图形性质以及图形的面积的计算,不规则图形的面积等于规则图形的面积的和或差.(1)过C点作CF⊥x轴于点F,则OA=1,OF=4,OB=2,OA=1,CF=3,AE=2.根据S△ABC=S四边形EOFC﹣S△OAB﹣S△ACE﹣S△BCF代值计算即可.S△ABC=3×4﹣×2×3﹣×2×4﹣×1×2=4;(2)分点P在x轴上和点P在y轴上两种情况讨论可得符合条件的点P的坐标.如图所示:P1(﹣6,0)、P2(10,0)、P3(0,5)、P4(0,﹣3).5.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0(1)求a、b、c的值;(2)如果在第二象限内有一点P(m,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与△ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)a=2,b=3,c=4;(2)3﹣m(3)存在点P(﹣3,)【解析】本题考查了非负数的性质,三角形及四边形面积的求法,根据题意容易解答.(1)由已知|a﹣2|+(b﹣3)2=0,(c﹣4)2≤0及(c﹣4)2≥0可得:a=2,b=3,c=4;(2)∵×2×3=3,×2×(﹣m)=﹣m,∴S四边形ABOP=S△ABO+S△APO=3+(﹣m)=3﹣m(3)因为×4×3=6,∵S四边形ABOP=S△ABC∴3﹣m=6,则m=﹣3,所以存在点P(﹣3,)使S四边形ABOP=S△ABC.6.如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3)(1)求点C到x轴的距离;(2)求△ABC的面积;(3)点P在y轴上,当△ABP的面积为6时,请直接写出点P的坐标.【答案】(1)3(2)18(3)(0,1)或(0,5)【解析】本题考查了坐标与图形,解决本题的关键是利用数形结合的思想.(1)点C的纵坐标的绝对值就是点C到x轴的距离解答;∵C(﹣1,﹣3),∴|﹣3|=3,∴点C到x轴的距离为3;(2)根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论