




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年湖北省咸宁市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________
一、单选题(10题)1.函数y=lg(x+1)的定义域是()A.(-∞,-1)B.(-∞,1)C.(-l,+∞)D.(1,+∞)
2.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)
B.y=2sin(2x-π/3)
C.y=2sin(x+π/6)
D.y=2sin(x+π/3)
3.若函数f(x)=x2+ax+3在(-∞,1]上单调递减,则实数a的取值范围是()A.(-∞,1]B.[―1,+∞)C.(―∞,-2]D.(-2,+∞)
4.A.
B.
C.
D.
5.函数y=|x|的图像()
A.关于x轴对称B.关于y轴对称C.关于原点对称D.关于y=x直线对称
6.直线以互相平行的一个充分条件为()A.以都平行于同一个平面
B.与同一平面所成角相等
C.平行于所在平面
D.都垂直于同一平面
7.已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1/x,则f(-1)=()A.2B.1C.0D.-2
8.设sinθ+cosθ,则sin2θ=()A.-8/9B.-1/9C.1/9D.7/9
9.不等式组的解集是()A.{x|0<x<2}
B.{x|0<x<2.5}
C.{x|0<x<}
D.{x|0<x<3}
10.焦点在y轴的负半轴上且焦点到准线的距离是2的抛物线的标准方程是()A.y2=-2x
B.x2=-2y
C.y2=-4x
D.x2=-4y
二、填空题(10题)11.五位同学站成一排,其中甲既不站在排头也不站在排尾的排法有_____种.
12.双曲线x2/4-y2/3=1的离心率为___.
13.
14.
15.函数y=3sin(2x+1)的最小正周期为
。
16.
17.
18.长方体中,具有公共顶点A的三个面的对角线长分别是2,4,6,那么这个长方体的对角线的长是_____.
19.若直线的斜率k=1,且过点(0,1),则直线的方程为
。
20.若f(X)=,则f(2)=
。
三、计算题(5题)21.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.
22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2
.
23.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.
24.解不等式4<|1-3x|<7
25.(1)求函数f(x)的定义域;(2)判断函数f(x)的奇偶性,并说明理由。
四、简答题(10题)26.四棱锥S-ABCD中,底面ABOD为平行四边形,侧面SBC丄底面ABCD(1)证明:SA丄BC
27.证明上是增函数
28.已知函数,且.(1)求a的值;(2)求f(x)函数的定义域及值域.
29.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。
30.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。
31.已知椭圆和直线,求当m取何值时,椭圆与直线分别相交、相切、相离。
32.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD
33.求k为何值时,二次函数的图像与x轴(1)有2个不同的交点(2)只有1个交点(3)没有交点
34.由三个正数组成的等比数列,他们的倒数和是,求这三个数
35.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值
五、解答题(10题)36.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1
37.李经理按照市场价格10元/千克在本市收购了2000千克香菇存放人冷库中.据预测,香菇的市场价格每天每千克将上涨0.5元,但冷库存放这批香菇时每天需要支出费用合计340元,而且香菇在冷库中最多保存110天,同时,平均每天有6千克的香菇损坏不能出售.(1)若存放x天后,将这批香菇一次性出售,设这批香菇的销售总金额为y元,试写出y与x之间的函数关系式;(2)李经理如果想获得利润22500元,需将这批香菇存放多少天后出售?(提示:利润=销售总金额一收购成本一各种费用)(3)李经理将这批香菇存放多少天后出售可获得最大利润?最大利润是多少?
38.
39.已知函数f(x)=ex(ax+b)—x2—4x,曲线:y=f(x)在点(0,f(0))处的切线方程为y=4x+4.(1)求a,b的值;(2)讨论f(x)的单调性,并求f(x)的极大值.
40.
41.
42.如图,在四棱锥P—ABCD中,平面PAD丄平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.连接BD求证:(1)直线EF//平面PCD;(2)平面BEF丄平面PAD.
43.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.
44.
45.已知椭圆C:x2/a2+y2/b2=1(a>b>0)的两焦点分别F1,F2点P在椭圆C上,且∠PF2F1=90°,|PF1|=6,|PF2|=2.(1)求椭圆C的方程;(2)是否存在直线L与椭圆C相交于A、B两点,且使线段AB的中点恰为圆M:x2+y2+4x-2y=0的圆心,如果存在,求直线l的方程;如果不存在,请说明理由.
六、单选题(0题)46.A.B.C.
参考答案
1.C函数的定义.x+1>0所以.x>-1.
2.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)
3.C二次函数图像的性质.根据二次函数图象的对称性有-a/2≥1,得a≤-2.
4.A
5.B由于函数为偶函数,因此函数图像关于y对称。
6.D根据直线与平面垂直的性质定理,D正确。
7.D函数的奇偶性.由题意得f(-1)=-f(1)=-(1+1)=-2
8.A三角函数的计算.因为sinθ+cosθ=1/3,(sinθ+cosθ)2=1/9=1+sin2θ所以sin2θ=-8/9
9.C由不等式组可得,所以或,由①可得,求得;由②可得,求得,综上可得。
10.D
11.72,
12.e=双曲线的定义.因为
13.①③④
14.√2
15.
16.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.
17.-1
18.
19.3x-y+1=0因为直线斜率为k=1且过点(0,1),所以方程是y-2=3x,即3x-y+1=0。
20.00。将x=2代入f(x)得,f(2)=0。
21.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2
22.
23.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4
24.
25.
26.证明:作SO丄BC,垂足为O,连接AO∵侧面SB丄底面ABCD∴SO丄底面ABCD∵SA=SB∴0A=0B又∵ABC=45°∴AOB是等腰直角三角形则OA丄OB得SA丄BC
27.证明:任取且x1<x2∴即∴在是增函数
28.(1)(2)
29.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。
(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,
∴CD⊥平面ABC,∴CD⊥AB,
∵∠BAC=90°,∴AB⊥AC,
∵AC∩CD=C,
∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,
∴AO⊥BC,∴AO⊥平面BDC,
以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,
30.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴
31.∵∴当△>0时,即,相交当△=0时,即,相切当△<0时,即,相离
32.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)
33.∵△(1)当△>0时,又两个不同交点(2)当A=0时,只有一个交点(3)当△<0时,没有交点
34.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1
35.
36.(1)如图,连接BD,在正方体AC1中,对角线BD//B1D1.又因为,E,F分别为棱AD,AB的中点,所以EF//BD,所以EF//B1D1,又因为B1D1包含于平面CB1D1,所以EF//平面CB1D1.
37.(1)由题意,y与x之间的函数关系式为y=(10+0.5x)(2000-6x)=-3x2+940x+20000(l≤x≤110).(2)由题(-3x2+940x+20000)-(10×2000+340x)=22500;化简得,x2-200x+7500=0;解得x1=50,x2=150(不合题意,舍去);因此,李经理想获得利润22500,元,需将这批香菇存放50天后出售.(3)设利润为w,则由(2)得,w=(―3x2+940x+20000)-(10×2000+340x)=-32+600x=-3(x-100)2;因此,当x=100时,wmax=30000;又因为100∈(0,110),所以李经理将这批香菇存放100天后出售可获得最大利润为30000元.
38.
39.
40.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- java源码面试题及答案
- 环境应急考试题及答案
- java面试题及答案arrlist
- 换药术考试题及答案
- 江苏省南京市励志高级中学2024-2025学年高一下学期6月期末地理试题(含答案)
- 心理健康协会会长竞选
- 广西钦州市第十三中学2024-2025学年高一下学期第十六周考试历史试卷(含答案)
- 2025年湖北省黄冈市黄梅县中考适应性考试英语试题(含答案)
- 教师激励培训
- 药学药理学知识点练习题库
- 一级圆柱齿轮减速器的设计计算22001文档
- 第19章一次函数-一次函数专题数形结合一一次函数与45°角模型讲义人教版数学八年级下册
- 2023年四川省宜宾市叙州区数学六年级第二学期期末考试模拟试题含解析
- 幼儿园警察职业介绍课件
- 灭火器维修与报废规程
- 皮肤病的临床取材及送检指南-修订版
- 机型理论-4c172实用类重量平衡
- 校企合作项目立项申请表(模板)
- 管道工厂化预制推广应用课件
- 海水的淡化精品课件
- 项目工程移交生产验收报告
评论
0/150
提交评论