2023年广东省东莞市普通高校对口单招数学自考真题(含答案)_第1页
2023年广东省东莞市普通高校对口单招数学自考真题(含答案)_第2页
2023年广东省东莞市普通高校对口单招数学自考真题(含答案)_第3页
2023年广东省东莞市普通高校对口单招数学自考真题(含答案)_第4页
2023年广东省东莞市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年广东省东莞市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.A.10B.-10C.1D.-1

2.一元二次不等式x2+x-6<0的解集为A.(-3,2)B.(2,3)C.(-∞,-3)∪(2,+∞)D.(-∞,2)∪(3,+∞)

3.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

4.已知过点A(0,-1),点B在直线x-y+1=0上,直线AB的垂直平分线x+2y-3=0,则点B的坐标是()A.(-2,-3)B.(2,3)C.(2,1)D.(-2,1)

5.A.π

B.C.2π

6.若输入-5,按图中所示程序框图运行后,输出的结果是()A.-5B.0C.-1D.1

7.A.11B.99C.120D.121

8.A.第一象限角B.第二象限角C.第一或第二象限角D.小于180°的正角

9.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱B.棱台C.圆柱D.圆台

10.下列句子不是命题的是A.5+1-3=4

B.正数都大于0

C.x>5

D.

二、填空题(10题)11.如图所示,某人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为____。

12.

13.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

14.设A(2,-4),B(0,4),则线段AB的中点坐标为

15.直线经过点(-1,3),其倾斜角为135°,则直线l的方程为_____.

16.在平面直角坐标系xOy中,直线2x+ay-1=0和直线(2a-1)x-y+1=0互相垂直,则实数a的值是______________.

17.

18.某程序框图如下图所示,该程序运行后输出的a的最大值为______.

19.正方体ABCD-A1B1C1D1中AC与AC1所成角的正弦值为

20.

三、计算题(5题)21.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

22.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

23.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

24.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.

25.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

四、简答题(10题)26.已知的值

27.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

28.据调查,某类产品一个月被投诉的次数为0,1,2的概率分别是0.4,0.5,0.1,求该产品一个月内被投诉不超过1次的概率

29.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

30.已知集合求x,y的值

31.在三棱锥P-ABC中,已知PA丄BC,PA=a,EC=b,PA,BC的公垂线EF=h,求三棱锥的体积

32.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

33.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

34.证明上是增函数

35.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

五、解答题(10题)36.

37.若x∈(0,1),求证:log3X3<log3X<X3.

38.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

39.

40.某学校高二年级一个学习兴趣小组进行社会实践活动,决定对某“著名品牌”A系列进行市场销售量调研,通过对该品牌的A系列一个阶段的调研得知,发现A系列每日的销售量f(x)(单位:千克)与销售价格x(元/千克)近似满足关系式f(x)=a/x-4+10(1-7)2其中4<x<7,a为常数.已知销售价格为6元/千克时,每日可售出A系列15千克.(1)求函数f(x)的解析式;(2)若A系列的成本为4元/千克,试确定销售价格x的值,使该商场每日销售A系列所获得的利润最大.

41.如图,在四棱锥P-ABCD中,底面是正方形,PD⊥平面ABCD,且PD=AD.(1)求证:PA⊥CD;(2)求异面直线PA与BC所成角的大小.

42.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.

43.

44.如图,在正方体ABCD—A1B1C1D1中,E,F分别为棱AD,AB的中点.(1)求证:EF//平面CB1D1;(2)求证:平面CAA1C1丄平面CB1D1

45.解不等式4<|1-3x|<7

六、单选题(0题)46.设m>n>1且0<a<1,则下列不等式成立的是()A.am<an

B.an<am

C.a-m<a-n

D.ma<na

参考答案

1.C

2.A

3.D

4.B由于B在直线x-y+1=0上,所以可以设B的坐标为(x,x+1),AB的斜率为,垂直平分线的斜率为,所以有,因此点B的坐标为(2,3)。

5.C

6.D程序框图的运算.因x=-5,不满足>0,所以在第一个判断框中

7.C

8.D

9.D空间几何体的三视图.从俯视图可看出该几何体上下底面为半径不等的圆,正视图与侧视图为等腰梯形,故此几何体为圆台.

10.C

11.2/π。

12.-3由于cos(x+π/6)的最小值为-1,所以函数f(x)的最小值为-3.

13.2基本不等式求最值.由题

14.(1,0)由题可知,线段AB的中点坐标为x=(2+0)/2=1,y=(-4+4)/2=0。

15.x+y-2=0

16.2/3两直线的位置关系.由题意得-2/a×(2a-1)=-1,解得a=2/3

17.

18.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.

19.

,由于CC1=1,AC1=,所以角AC1C的正弦值为。

20.-1/16

21.

22.

23.

24.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-4

25.

26.

∴∴则

27.x-7y+19=0或7x+y-17=0

28.设事件A表示“一个月内被投诉的次数为0”,事件B表示“一个月内被投诉的次数为1”∴P(A+B)=P(A)+P(B)=0.4+0.5=0.9

29.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

30.

31.

32.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,

33.

∵μ//v∴(2x+1.4)=(2-x,3)得

34.证明:任取且x1<x2∴即∴在是增函数

35.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

36.

37.

38.

39.

40.(1)由题意可知,当x=6时,f(x)=15,即a/2+10=15,解得a=10,所以f(x)=10f(x-4)++10(x-7)2.(2)设该商场每日销售A系列所获得的利润为h(x),h(x)=(x-4)[10/x-4+10(x-7)2]=10x3-180x2+1050x-1950(4<x<7),h(x)=30x2-360x+1050,令h(x)=30x2-360x+1050=0,得x=5或x=7(舍去),所以当4<x<5时,h(x)>0,h(x)在(4,5]为增函数;当5<x<7,h(x)<0,h(x)在[5,7)为减函数,故当x=5时,函数h(x)在区间(4,7)内有极大值点,也是最大值点,即x=5时函数h(x)取得最大值50.所以当销售价格为5元/千克时,A系列每日所获得的利润最大.

41.(1)如图,已知底面ABCD是正方形,∴CD⊥AD.∵PD⊥平面ABCD,又CD包含于平面ABCD,∴PD⊥CD.∵PD∩AD=D,∴CD⊥平面PAD,又PA包含于平面PAD,∴PA⊥CD.(2)解∵BC

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论