不确定度理解_第1页
不确定度理解_第2页
不确定度理解_第3页
不确定度理解_第4页
不确定度理解_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

不确定度不确定度的含义是指由于测量误差的存在,对被测量值的不能肯定的程度。反过来,也表明该结果的可信赖程度。它是测量结果质量的指标。不确定度愈小,所述结果与被测量的真值愈接近,质量越高,水平越高,其使用价值越高;不确定度越大,测量结果的质量越低,水平越低,其使用价值也越低。在报告物理量测量的结果时,必须给出相应的不确定度,一方面便于使用它的人评定其可靠性,另一方面也增强了测量结果之间的可比性。定义测量不确定度是指“表征合理地赋予被测量之值的分散性,与测量结果相联系的参数”。这个定义中的“合理”,意指应考虑到各种因素对测量的影响所做的修正,特别是测量应处于统计控制的状态下,即处于随机控制过程中。也就是说,测量是在重复性条件(见JJF1001—1998《通用计量术语及定义》第5.6条,本文x.x条均指该规范的条款号)或复现性条件(见5.7条)下进行的,此时对同一被测量做多次测量,所得测量结果的分散性可按5?8条的贝塞尔公式算出,并用重复性标准〔偏〕差sr或复现性标准〔偏)差sR表示。定义中的“相联系”,意指测量不确定度是一个与测量结果“在一起”的参数,在测量结果(见5?1条)的完整表示中应包括测量不确定度。原理测量不确定度从词义上理解,意味着对测量结果可信性、有效性的怀疑程度或不肯定程度,是定量说明测量结果的质量的一个参数。实际上由于测量不完善和人们的认识不足,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的许多个值。虽然客观存在的系统误差是一个不变值,但由于我们不能完全认知或掌握,只能认为它是以某种概率分布存在于某个区域内,而这种概率分布本身也具有分散性。测量不确定度就是说明被测量之值分散性的参数,它不说明测量结果是否接近真值。为了表征这种分散性,测量不确定度用标准〔偏)差表示。在实际使用中,往往希望知道测量结果的置信区间,因此,在本定义注1中规定:测量不确定度也可用标准〔偏)差的倍数或说明了置信水准的区间的半宽度表示。为了区分这两种不同的表示方法,分别称它们为标准不确定度和扩展不确定度。特点

测量结果是一个区域测量的目的是为了确定被测量的量值。测量结果的品质是量度测量结果可信程度的最重要的依据。测量不确定度就是对测量结果质量的定量表征,测量结果的可用性很大程度上取决于其不确定度的大小。所以,测量结果表述必须同时包含赋予被测量的值及与该值相关的测量不确定度,才是完整并有意义的。表征合理地赋予被测量之值的分散性、与测量结果相联系的参数,称为测量不确定度。字典中不确定度(uncertainty)的定义为“变化、不可靠、不确知、不确定”。因此,广义上说,测量不确定度意味着对测量结果可信性、有效性的怀疑程度或不肯定程度。实际上,由于测量不完善和人们认识的不足,所得的被测量值具有分散性,即每次测得的结果不是同一值,而是以一定的概率分散在某个区域内的多个值。虽然客观存在的系统误差是一个相对确定的值,但由于我们无法完全认知或掌握它,而只能认为它是以某种概率分布于某区域内的,且这种概率分布本身也具有分散性。测量不确定度正是一个说明被测量之值分散性的参数,测量结果的不确定度反映了人们在对被测量值准确认识方面的不足。即使经过对已确定的系统误差的修正后,测量结果仍只是被测量值的一个估计值,这是因为,不仅测量中存在的随机效应将产生不确定度,而且,不完全的系统效应修正也同样存在不确定度。原来流量量传体系中要求上一级标准器的允许误差需小于下一级标准器的1/2〜1/3,不确定度理论的发展使得大家认可测量结果的不确定度按不确定度评定方法进行分析,当被测仪器重复性很好且测量过程得到较好控制时,两级标准器不确定度的差异可能会相差无几,这样就大大减少了传递过程中精度的损失,使得量值传递体系更为合理。不确定度与误差概率论、线性代数和积分变换是误差理论的数学基础,经过几十年的发展,误差理论已自成体系。实验标准差是分析误差的基本手段,也是不确定度理论的基础。因此从本质上说不确定度理论是在误差理论基础上发展起来的,其基本分析和计算方法是共同的。但在概念上存在比较大的差异。测量不确定度表明赋予被测量之值的分散性,是通过对测量过程的分析和评定得出的一个区间。测量误差则是表明测量结果偏离真值的差值。不确定度的A类评定与B类评定用对观测列的统计分析进行评定得出的标准不确定度称为A类标准不确定度,用不同于对观测列的统计分析来评定的标准不确定度称为B类标准不确定度。将不确定度分为“A”类与“B”类,仅为讨论方便,并不意味着两类评定之间存在本质上的区别,

A类不确定度是由一组观测得到的频率分布导出的概率密度函数得出:B类不确定度则是基于对一个事件发生的信任程度。它们都基于概率分布,并都用方差或标准差表征。两类不确定度不存在那一类较为可靠的问题。一般来说,A类比B类较为客观,并具有统计学上的严格性。测量的独立性、是否处于统计控制状态和测量次数决定A类不确定度的可靠性。“A”、“B”两类不确定度与“随机误差”与“系统误差”的分类之间不存在简单的对应关系。“随机”与“系统”表示误差的两种不同的性质,“A”类与“B”类表示不确定度的两种不同的评定方法。随机误差与系统误差的合成是没有确定的原则可遵循的,造成对实验结果处理时的差异和混乱。而A类不确定度与B类不确定度在合成时均采用标准不确定度,这也是不确定度理论的进步之一。测量不确定度的产生原因在实践中,测量不确定度可能来源于以下10个方面:对被测量的定义不完整或不完善;实现被测量的定义的方法不理想;取样的代表性不够,即被测量的样本不能代表所定义的被测量;对测量过程受环境影响的认识不周全,或对环境条件的测量与控制不完善;对模拟仪器的读数存在人为偏移;测量仪器的分辨力或鉴别力不够;⑺赋与计量标准的值和参考物质(标准物质)的值不准;引用于数据计算的常量和其它参量不准;测量方法和测量程序的近似性和假定性;在表面上看来完全相同的条件下,被测量重复观测值的变化。来源由此可见,测量不确定度一般来源于随机性和模糊性,前者归因于条件不充分,后者归因于事物本身概念不明确。这就使得测量不确定度一般由许多分量组成,其中一些分量可以用测量列结果(观测值)的统计分布来进行估算,并且以实验标准〔偏)差(见5?8条)表征;而另一些分量可以用其它方法(根据经验或其它信息的假定概率分布)来进行估算,并且也以标准〔偏)差表征。所有这些分量,应理解为都贡献给了分散性。若需要表示某分量是由某原因导致时,可以用随机效应导致的不确定度和系统效应导致的不确定度,而不要用“随机不确定度”和“系统不确定度”这两个业已过时或淘汰的术语。例如:由修正值和计量标准带来的不确定度分量,可以称之为系统效应导致的不确定度。结果不确定度当由方差得出时,取其正平方根。当分散性的大小用说明了置信水准的

区间的半宽度表示时,作为区间的半宽度取负值显然也是毫无意义的。当不确定度除以测量结果时,称之为相对不确定度,这是个无量纲量,通常以百分数或10的负数幂表示。对测量不确定度的认识过程在测量不确定度的发展过程中,人们从传统上理解它是“表征(或说明)被测量真值所处范围的一个估计值(或参数)”;也有一段时期理解为“由测量结果给出的被测量估计值的可能误差的度量”。这些曾经使用过的定义,从概念上来说是一个发展和演变过程,它们涉及到被测量真值和测量误差这两个理想化的或理论上的概念(实际上是难以操作的未知量),而可以具体操作的则是现定义中测量结果的变化,即被测量之值的分散性。早在七十年代初,国际上已有越来越多的计量学者认识到使用“不确定度”代替“误差”更为科学,从此,不确定度这个术语逐渐在测量领域内被广泛应用。1978年国际计量局提出了实验不确定度表示建议书INC-1。1993年制定的《测量不确定度表示指南》得到了BIPM、OIML、ISO、IEC、IUPAC、IUPAP、IFCC七个国际组织的批准,由ISO出版,是国际组织的重要权威文献。我国也已于1999年颁布了与之兼容的测量不确定度评定与表示计量技术规范。至此,测量不确定度评定成为检测和校准实验室必不可少的工作之一。自由度(degreeoffreedom,df^数学中能够自由取值的变量个数,如有3个变量x、y、z,但x+y+z=18,因此其自由度等于2。在统计学中,自由度指的是计算某一统计量时,取值不受限制的变量个数。通常df=n-k。其中n为样本含量,k为被限制的条件数或变量个数,或计算某一统计量时用到其它独立统计量的个数。自由度通常用于抽样分布中自由度综述“自由度”(degreesoffreedom,df)是在统计学,物理学,工程机械中的基本知识,通常用于抽样分布中。而电子游戏中也有自由度这个概念。一、统计学和计量经济学统计学上的自由度是指当以样本的统计量来估计总体的参数时,样本中独立或能自由变化的资料的个数,称为该统计量的自由度。统计学上的自由度包括两方面的内容:

首先,在估计总体的平均数时,由于样本中的n个数都是相互独立的,TOC\o"1-5"\h\z从其中抽出任何一个数都不影响其他数据,所以其自由度为n。在估计总体的方差时,使用的是离差平方和。只要n-1个数的离差平方和确定了,方差也就确定了;因为在均值确定后,如果知道了其中n-1个数的值,第n个数的值也就确定了。这里,均值就相当于一个限制条件,由于加了这个限制条件,估计总体方差的自由度为n-1。例如,有一个有4个数据(n=4)的样本,其平均值m等于5,即受到m=5的条件限制,在自由确定4、2、5三个数据后,第四个数据只能是9,否则m^5。因而这里的自由度u=n-1=4-1=3。推而广之,任何统计量的自由度u=n-限制条件的个数。其次,统计模型的自由度等于可自由取值的自变量的个数。如在回归方程中,如果共有p个参数需要估计,则其

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论