教学设计 勾股定理 公开课比赛一等奖_第1页
教学设计 勾股定理 公开课比赛一等奖_第2页
教学设计 勾股定理 公开课比赛一等奖_第3页
教学设计 勾股定理 公开课比赛一等奖_第4页
教学设计 勾股定理 公开课比赛一等奖_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:勾股定理(1)科目:数学教学对象:初中生课时:1一、教学内容分析本节课是勾股定理的第1课时,根据课程标准的要求,注意让学生经历探索勾股定理的过程,鼓励学生用不同的方法解决问题,在解决问题的过程中,注意渗透数形结合的思想。另外,勾股定理具有很高的文化价值,这点要充分体现,以提高学生探索的欲望。二、教学目标体验勾股定理的探索过程,掌握勾股定理。会用勾股定理解决简单问题。通过合作学习和拼图验证勾股定理,培养学生的合作意识,体会数形结合的思想。利用情景创设,体会数学的美;利用拼图验证,感受数学发展的方法。三、学习者特征分析学生经历了一年的初中学习,具备了一定的归纳、总结、类比、转化以及数学表达的能力,对现实生活中的数学知识充满了强烈的好奇心与探究欲,并能在老师的指导下通过小组成员间的互助合作,发表自己的见解。另外,在学本节课时,通过前置知识的学习,学生对直角三角形有了初步的认识,并能从直观把握直角三角形的一些特征,为此在授课时要抓住学生的这些特点;介绍勾股定理的历史以激发学生学习数学的兴趣,建立他们的自信心,为学生空间观念的发展、数学活动经验的积累、个性的发挥提供机会。四、教学策略选择与设计五、教学重点及难点重点:勾股定理难点:勾股定理的探究采用了面积法,这是学生从未体验过的,市本节教学的难点。六、教学过程教师活动学生活动设计意图一.创设情境,导入新课俄罗斯的伟大作家托尔斯泰在作品《一个人需要很多的土地吗?》中写出一个故事:有一个叫巴河姆的人到草原上去购买土地。卖地的人提出了一个非常奇怪的地价:“每天1000卢布。”意思是:谁出1000卢布,那么他从日出到日落走过的路所围成的土地都归他;不过,如果日落之前买地的人回不到原来的出发点,那么他就一点土地也得不到。巴河姆觉得条件对自己有利,于是付了1000卢布。第二天太10俄里才左拐弯,接着又走了许久,才再向左拐弯,这样又走了2俄里,这时他发现天色已经不早,而自己离出发点还足足有17俄里,于是只得改变方向,拼命朝出发点跑去,总算在日落之前赶回了出发点。可是,他还未站稳,两脚一软,就倒地口吐鲜血而死。你能算出巴河姆这一天共走了多少路?走过的路所围成的土地面积有多大吗?师生互动,引入新课引起学生的兴趣合作探索,讲授新课由多媒体打出网格,在网格中给出任意三角形,引导学生到格点图中去验证自己的猜测。由于网格的不规则,引出用割补的方法进行计算。小组讨论并举手回答:割补方法不一。原则:不规则经过割补变为规则。问题1:此图反映了什么?问题2:这种方法是否有局限性?问题3:还有什么方法揭示这个关系?动手动脑,使抽象变具体三.定理的论证:讲解P73方案及证明,展示几个证法的构图,开拓学生思路,视情况选择证明其它方案:1)我国商朝勾三、股四、弦五:我国古代著名的数学著作《周髀算经》;2)国外希腊的毕达哥拉斯学派;承古开今,趣味历史,激发学生的学习兴趣,通过有关勾股定理的历史讲解,对学生进行爱国教育.四.勾股定理的应用例1:已知ΔABC中,∠C=Rt∠,BC=a,AC=b,AB=c。(1)若a=1,b=2,求c;(2)若a=15,c=17,求b;(3)若c=15,a:b=3:4,求a、b;例2:如图,在△ABC中,AB=AC。已知AB=13,BC=10。(1)求BC边上的中线AD的长。(2)求△ABC的面积。(3)过点B作BE⊥AC,垂足为E,求BE的长。五.小结1.勾股定理:直角三角形两直角边的平方和等于斜边的平方。2.勾股定理的应用:计算边长,高线,面积等学生独立完成后,教师点评1)本例(3)选讲;(注:本题做的好的同学,会有提升练习)七、教学评价设计评价就其实质来讲,乃是一种监控机制。这种反馈监控机制包括"他律"与"自律"两个方面。所谓"他律"是以他人评价为基础的,"自律"是以自我评价为基础的。每个人素质生成都经历着一个从"他律"到"自律"的发展过程,经历着一个从学会评价他人到学会评价自己的发展过程。实施他人评价,完善素质发展的他人监控机制很有必要。每个人都要以他人为镜,从他人这面镜子中照见自我。但发展的成熟、素质的完善主要建立在自律的基础上,是以素质的自我评价、自我调节、自我教育为标志的。因此要改变单纯由教师评价的现状,提倡评价主体的多元化,把教师评价、同学评价、家长评价及学生的自评相结合。尤其要突出学生的自评,提高他们的自我认识、自我调节、自我评价的能力,增强反思意识,培养健康的心理。八、板书设计

例1:已知ΔABC中,∠C=Rt∠,BC=a,AC=b,AB=c。(1)若a=1,b=2,求c;(2)若a=15,c=17,求b;(3)若c=15,a:b=3:4,求a、b;九.教学反思可以从如下角度进行反思(不少于200字):首先,创设情境,由实例引入,激发学生的学习兴趣,然后通过动手操作、大胆猜想、勇于验证等一系列自主探究、合作交流活动得出定理,并运用定理进一步巩固提高。体现了学生是数学学习的主人,人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展。在学习中,我注意到了学生的个体差异,要求不同的学生达到不同的学习水平。以小组为单位的合作学习解决了后进生学习难的问题,帮助他们克服了学习上的自卑心理。同时,对于一些学有余力的学生,教师也为他们提供了发展的机会,以小老师的身份去教学困者,这样既防止他们产生自满情绪,又让他们始终保持着强烈的求知欲望,使他们在完成这种任务的过程中获得更大的发展。这样大部分学生都能在老师的帮助下完成学习任务,从而增强了学生的学习兴趣,降低了认知难度。学习的过程性:1.关注学生是否积极参加探索勾股定理的活动,关注学生能否在活动中积思考,能够探索出解决问题的方法,能否进行积极的联想(数形结合)以及学生能否有条理的表达活动过程和所获得的结论等;2.关注学生的拼图过程,鼓励学生结合自己所拼得的正方形验证勾股定理.学习的知识性:掌握勾股定理,体会数形结合的思想.试一试:我国古代数学著作《九章算术》中记载了一道有趣的问题,这个问题的意思是:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根新生的芦苇,它高出水面1尺。如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面。请问这个水池的深度和芦苇的长度各是多少?新课标对几何内容的安排。安排采取了首先是直观和经验,接着是说理与抽象,最后是演绎的方案。以直线形为例,先借助直观认识一个直线形,进而借助多种手段合乎情理地发现它的某种几何性质,接着通过演绎推理把这个性质搞定。看上去,强化了直观和实验,弱化了推理,实际上,在这里直观和推理两者都很重要,而且两者之间互为支撑,有互逆的性质。让直观几何和推理几何并重,把发现和证明绑在一起,与传统的几何课程体系确有不同。说到几何,新课标对几何的重视程度丝毫没有减弱,而是在加强。例如直观和实验几何的触角已经伸向了小学低年级,同时欧氏几何的体系和内容差不多还是完整呈现。如果说有所弱化,就是具体要求降低了,这种降低主要体现在两个方面,一个是对推理几何的难度要求有所限制,另外是弱化了相似形和圆(包括圆与直线之间的关系)这块内容的证明部分。教材内容的丰富,充分激发了学生的学习积极性。教材编排了一些游戏性的智力题,引导学生发现数学规律,探索数学世界的奥秘,采用阅读一些数学小故事和数学发展史,丰富学生的数学知识和对世界数学文化的了解,充分激发了学生继续学习数学和发展数学的积极性,把生活中的实物抽象成几何图形,让学生了解丰富变幻的图形世界,培养了学生抽象思维能力,特别侧重于培养学生认识事物,探索问题,解决实际的能力。让学生感兴趣且愿意学,并且接受知识是循序渐进的过程,随着数学知识的不断学习,也使学生亲身体会到了学习数学的重要意义:我们的生活中处处离不开数学,处处需要数学,学习数学也是非常有意思的。三提高教学科技含量,充分利用多媒体。几何图形可以直观地表示出来,人们认识图形的初级阶段中主要依靠形象思维。远古时期人们对几何图形的认识始于观察、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论