2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)_第1页
2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)_第2页
2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)_第3页
2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)_第4页
2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2023年江苏省连云港市普通高校对口单招数学自考模拟考试(含答案)学校:________班级:________姓名:________考号:________

一、单选题(20题)1.将三名教师排列到两个班任教的安排方案数为()A.5B.6C.8D.9

2.设a=log32,b=log52,c=log23,则()A.a>c>bB.b>c>aC.c>b>aD.c>a>b

3.若f(x)=4log2x+2,则f⑵+f⑷+f(8)=()A.12B.24C.30D.48

4.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx

5.已知向量a=(l,-l),6=(2,x).若A×b=1,则x=()A.-1B.-1/2C.1/2D.1

6.己知tanα,tanβ是方程2x2+x-6=0的两个根,则tan(α+β)的值为()A.-1/2B.-3C.-1D.-1/8

7.在等比数列中,a1+a2=162,a3+a4=18,那么a4+a5等于()A.6B.-6C.±2D.±6

8.已知A={x|x+1>0},B{-2,-1,0,1},则(CRA)∩B=()A.{-2,-1}B.{-2}C.{-1,0,1}D.{0,1}

9.已知向量a=(1,k),b=(2,2),且a+b与a共线,那么a×b的值为()A.1B.2C.3D.4

10.己知集合A={x|x>0},B={x|-2<x<1},则A∪B等于()A.{x|0<x<1}B.{x|x>0}C.{x|-2<x<1}D.{x|x>-2}

11.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=()A.21B.19C.9D.-11

12.己知向量a

=(2,1),b

=(-1,2),则a,b之间的位置关系为()A.平行B.不平行也不垂直C.垂直D.以上都不对

13.不等式lg(x-1)的定义域是()A.{x|x<0}B.{x|1<x}C.{x|x∈R}D.{x|0<x<1}

14.已知a=1.20.1,b=ln2,c=5-1/2,则a,b,c的大小关系是()A.b>a>cB.a>c>bC.a>b>cD.c>a>b

15.如下图所示,转盘上有8个面积相等的扇形,转动转盘,则转盘停止转动时,指针落在阴影部分的概率为()A.1/8B.1/4C.3/8D.1/2

16.A.6B.7C.8D.9

17.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

18.将边长为1的正方形以其一边所在直线为旋转轴旋转一周,所得几何体的侧面积是()A.4πB.3πC.2πD.π

19.一条线段AB是它在平面a上的射景的倍,则B与平面a所成角为()A.30°B.45°C.60°D.不能确定

20.若向量A.(4,6)B.(-4,-6)C.(-2,-2)D.(2,2)

二、填空题(10题)21.1+3+5+…+(2n-b)=_____.

22.则a·b夹角为_____.

23.若△ABC中,∠C=90°,,则=

24.已知正实数a,b满足a+2b=4,则ab的最大值是____________.

25.

26.5个人站在一其照相,甲、乙两人间恰好有一个人的排法有_____种.

27.己知三个数成等差数列,他们的和为18,平方和是116,则这三个数从小到大依次是_____.

28.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2:3:4,现用分层抽样方法抽出一个容量为n的样本,样本中A种型号产品有6件,那么n=

29.

30.已知函数则f(f⑶)=_____.

三、计算题(5题)31.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.

32.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

33.解不等式4<|1-3x|<7

34.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

35.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

四、简答题(10题)36.已知函数.(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并加以证明;(3)a>1时,判断函数的单调性并加以证明。

37.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

38.已知等差数列的前n项和是求:(1)通项公式(2)a1+a3+a5+…+a25的值

39.已知求tan(a-2b)的值

40.求证

41.由三个正数组成的等比数列,他们的倒数和是,求这三个数

42.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

43.求过点P(2,3)且被两条直线:3x+4y-7=0,:3x+4y+8=0所截得的线段长为的直线方程。

44.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

45.设函数是奇函数(a,b,c∈Z)且f(1)=2,f(2)<3.(1)求a,b,c的值;(2)当x<0时,判断f(x)的单调性并加以证明.

五、证明题(10题)46.己知

a

=(-1,2),b

=(-2,1),证明:cos〈a,b〉=4/5.

47.己知正方体ABCD-A1B1C1D1,证明:直线AC1与直线A1D1所成角的余弦值为.

48.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.

49.长、宽、高分别为3,4,5的长方体,沿相邻面对角线截取一个三棱锥(如图).求证:剩下几何体的体积为三棱锥体积的5倍.

50.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2

+(y+1)2

=8.

51.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.

52.己知sin(θ+α)=sin(θ+β),求证:

53.

54.若x∈(0,1),求证:log3X3<log3X<X3.

55.△ABC的三边分别为a,b,c,为且,求证∠C=

六、综合题(2题)56.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.

57.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.

参考答案

1.B

2.D数值大小的比较.a=㏒32<㏒33=l,c=㏒23>㏒22=l,而b=㏒52<㏒1/32=a,∴b<a<c

3.C对数的计算∵f(2)=4㏒22+2=4×1+2=6,f(4)=424+2=4×2+2=10,f(8)=4log28+2=4×3+2=14,f(2)+f(4)+f(8)=6+10+14=30.

4.B,故在(0,π/2)是减函数。

5.D向量的线性运算.由题得A×b=1×2+(-1).x=2-x=1.所以x=1,

6.D

7.D设公比等于q,则由题意可得,,解得,或。当时,,当时,,所以结果为。

8.A交集

9.D平面向量的线性运算∵向量a=(1,k),b=(2,2),∴a+b=(3,k+2),又a+b与a共线.∴(k+2)-3k=0,解得k=1,∴A×b=(1,1).(2,2)=1×2+1×2=4,

10.D

11.C圆与圆相切的性质.圆C1的圆心C1(0,0),半径r1=1,圆C2的方程可化为(x-3)2+(y-4)2=25-m,所以圆心C2(3,4),

12.C

13.B

14.C对数函数和指数函数的单

15.D本题考查几何概型概率的计算。阴影部分的面积为圆面的一半,由几何概型可知P=1/2。

16.D

17.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)

18.C立体几何的侧面积.由几何体的形成过程所得几何体为圆柱,底面半径为1,高为1,其侧面积S=2πrh=2π×1×1=2π.

19.B根据线面角的定义,可得AB与平面a所成角的正切值为1,所以所成角为45°。

20.A向量的运算.=(l,2)+(3,4)=(4,6).

21.n2,

22.45°,

23.0-16

24.2基本不等式求最值.由题

25.①③④

26.36,

27.4、6、8

28.72

29.-1

30.2e-3.函数值的计算.由题意得,f(3)=㏒3(9-6)=1,所以f(f(3))=f⑴=2e-3.

31.

32.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

33.

34.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

35.

36.(1)-1<x<1(2)奇函数(3)单调递增函数

37.

38.

39.

40.

41.设等比数列的三个正数为,a,aq由题意得解得,a=4,q=1或q=解得这三个数为1,4,16或16,4,1

42.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

43.x-7y+19=0或7x+y-17=0

44.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

45.

∴得2c=0∴得c=0又∵由f(1)=2∴得又∵f(2)<3∴

∴得0<b<∵b∈Z∴b=1∴(2)设-1<<<0∵

若时

故当X<-1时为增函数;当-1≤X<0为减函数

46.

47.

48.证明:考虑对数函数y=lgx的限制知

:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx∈(0,1)∴lgx-2<0A-B<0∴A<B

49.证明:根据该几何体的特征,可知所剩的几何体的体积为长方体的体积减去所截的三棱锥的体积,即

50.

51.

∴PD//平面ACE.

52.

53.

54.

55.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论