




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023年中考数学模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,正方形被分割成四部分,其中I、II为正方形,III、IV为长方形,I、II的面积之和等于III、IV面积之和的2倍,若II的边长为2,且I的面积小于II的面积,则I的边长为()A.4 B.3 C. D.2.由一些大小相同的小正方形搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方形的个数最少是()A.4 B.5 C.6 D.73.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31° B.28° C.62° D.56°4.如图,在△ABC中,∠ABC=90°,AB=8,BC=1.若DE是△ABC的中位线,延长DE交△ABC的外角∠ACM的平分线于点F,则线段DF的长为()A.7 B.8 C.9 D.105.据财政部网站消息,2018年中央财政困难群众救济补助预算指标约为929亿元,数据929亿元科学记数法表示为()A.9.29×109 B.9.29×1010 C.92.9×1010 D.9.29×10116.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6 B.8 C.14 D.167.在中,,,下列结论中,正确的是()A. B.C. D.8.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是()A. B.C. D.9.甲车行驶30千米与乙车行驶40千米所用时间相同,已知乙车每小时比甲车多行驶15千米,设甲车的速度为千米/小时,依据题意列方程正确的是()A. B. C. D.10.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.511.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是()A.①②B.①③C.②③D.①②③12.两个同心圆中大圆的弦AB与小圆相切于点C,AB=8,则形成的圆环的面积是()A.无法求出 B.8 C.8 D.16二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.14.据报道,截止2018年2月,我国在澳大利亚的留学生已经达到17.3万人,将17.3万用科学记数法表示为__________.15.如图,矩形ABCD中,如果以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,那么的值等于________.(结果保留两位小数)16.如图,在平面直角坐标系xOy中,△DEF可以看作是△ABC经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC得到△DEF的过程:_____.17.请你算一算:如果每人每天节约1粒大米,全国13亿人口一天就能节约_____千克大米!(结果用科学记数法表示,已知1克大米约52粒)18.如图,O是矩形ABCD的对角线AC的中点,M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知抛物线y=x2﹣(2m+1)x+m2+m,其中m是常数.(1)求证:不论m为何值,该抛物线与z轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=,请求出该抛物线的顶点坐标.20.(6分)如图,已知AB是⊙O的直径,BC⊥AB,连结OC,弦AD∥OC,直线CD交BA的延长线于点E.(1)求证:直线CD是⊙O的切线;(2)若DE=2BC,AD=5,求OC的值.21.(6分)已知关于x的方程(a﹣1)x2+2x+a﹣1=1.若该方程有一根为2,求a的值及方程的另一根;当a为何值时,方程的根仅有唯一的值?求出此时a的值及方程的根.22.(8分)如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若AB=4,tan∠ADB=,求折叠后重叠部分的面积.23.(8分)如图,⊙O是△ABC的外接圆,AE平分∠BAC交⊙O于点E,交BC于点D,过点E做直线l∥BC.(1)判断直线l与⊙O的位置关系,并说明理由;(2)若∠ABC的平分线BF交AD于点F,求证:BE=EF;(3)在(2)的条件下,若DE=4,DF=3,求AF的长.24.(10分)“赏中华诗词,寻文化基因,品生活之美”,某校举办了首届“中国诗词大会”,经选拔后有50名学生参加决赛,这50名学生同时默写50首古诗词,若每正确默写出一首古诗词得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:请结合图表完成下列各题:(1)①表中a的值为,中位数在第组;②频数分布直方图补充完整;(2)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(3)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小明与小强两名男同学能分在同一组的概率.组别成绩x分频数(人数)第1组50≤x<606第2组60≤x<708第3组70≤x<8014第4组80≤x<90a第5组90≤x<1001025.(10分)已知抛物线y=ax2﹣bx.若此抛物线与直线y=x只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y轴上的点P(1,n)为中心,作该抛物线关于点P对称的抛物线y',若这两条抛物线有公共点,求n的取值范围;若a>1,将此抛物线向上平移c个单位(c>1),当x=c时,y=1;当1<x<c时,y>1.试比较ac与1的大小,并说明理由.26.(12分)先化简,再求值:,其中a是方程a2+a﹣6=0的解.27.(12分)“低碳生活,绿色出行”是我们倡导的一种生活方式,有关部门抽样调查了某单位员工上下班的交通方式,绘制了如下统计图:(1)填空:样本中的总人数为;开私家车的人数m=;扇形统计图中“骑自行车”所在扇形的圆心角为度;(2)补全条形统计图;(3)该单位共有2000人,积极践行这种生活方式,越来越多的人上下班由开私家车改为骑自行车.若步行,坐公交车上下班的人数保持不变,问原来开私家车的人中至少有多少人改为骑自行车,才能使骑自行车的人数不低于开私家车的人数?
参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、C【解析】
设I的边长为x,根据“I、II的面积之和等于III、IV面积之和的2倍”列出方程并解方程即可.【详解】设I的边长为x根据题意有解得或(舍去)故选:C.【点睛】本题主要考查一元二次方程的应用,能够根据题意列出方程是解题的关键.2、C【解析】试题分析:由题中所给出的左视图知物体共两层,每一层都是两个小正方体;从俯视图可以可以看出最底层的个数所以图中的小正方体最少2+4=1.故选C.3、D【解析】
先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【详解】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°-∠BDC=90°-62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.4、B【解析】
根据三角形中位线定理求出DE,得到DF∥BM,再证明EC=EF=AC,由此即可解决问题.【详解】在RT△ABC中,∵∠ABC=90°,AB=2,BC=1,∴AC===10,∵DE是△ABC的中位线,∴DF∥BM,DE=BC=3,∴∠EFC=∠FCM,∵∠FCE=∠FCM,∴∠EFC=∠ECF,∴EC=EF=AC=5,∴DF=DE+EF=3+5=2.故选B.5、B【解析】
科学记数法的表示形式为a×1n的形式,其中1≤|a|<1,n为整数.确定n的值是易错点,由于929亿有11位,所以可以确定n=11-1=1.【详解】解:929亿=92900000000=9.29×11.故选B.【点睛】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.6、C【解析】
根据根与系数的关系得到x1+x2=2,x1•x2=-5,再变形x12+x22得到(x1+x2)2-2x1•x2,然后利用代入计算即可.【详解】∵一元二次方程x2-2x-5=0的两根是x1、x2,
∴x1+x2=2,x1•x2=-5,
∴x12+x22=(x1+x2)2-2x1•x2=22-2×(-5)=1.
故选C.【点睛】考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=-,x1•x2=.7、C【解析】
直接利用锐角三角函数关系分别计算得出答案.【详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.8、B【解析】
首先设文学类图书平均每本的价格为x元,则科普类图书平均每本的价格为1.2x元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x元,可得:故选B.【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.9、C【解析】由实际问题抽象出方程(行程问题).【分析】∵甲车的速度为千米/小时,则乙甲车的速度为千米/小时∴甲车行驶30千米的时间为,乙车行驶40千米的时间为,∴根据甲车行驶30千米与乙车行驶40千米所用时间相同得.故选C.10、D【解析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.11、B【解析】
根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.12、D【解析】试题分析:设AB于小圆切于点C,连接OC,OB.∵AB于小圆切于点C,∴OC⊥AB,∴BC=AC=AB=×8=4cm.∵圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)又∵直角△OBC中,OB2=OC2+BC2∴圆环(阴影)的面积=π•OB2-π•OC2=π(OB2-OC2)=π•BC2=16π.故选D.考点:1.垂径定理的应用;2.切线的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、125【解析】
解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P∵∠A=70°,∠B+∠C=180∘−∠A=110°∵O在△ABC三边上截得的弦长相等,∴OM=ON=OP,∴O是∠B,∠C平分线的交点∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.故答案为:125°【点睛】本题考查了圆心角、弧、弦的关系,三角形内角和定理,角平分线的性质,解题的关键是掌握它们的性质和定理.14、1.73×1.【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】将17.3万用科学记数法表示为1.73×1.故答案为1.73×1.【点睛】本题考查了正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.15、3.1【解析】分析:由题意可知:BC的长就是⊙O的周长,列式即可得出结论.详解:∵以AB为直径的⊙O沿着滚动一周,点恰好与点C重合,∴BC的长就是⊙O的周长,∴π•AB=BC,∴=π≈3.1.故答案为3.1.点睛:本题考查了圆的周长以及线段的比.解题的关键是弄懂BC的长就是⊙O的周长.16、平移,轴对称【解析】分析:根据平移的性质和轴对称的性质即可得到由△OCD得到△AOB的过程.详解:△ABC向上平移5个单位,再沿y轴对折,得到△DEF,故答案为:平移,轴对称.点睛:考查了坐标与图形变化-旋转,平移,轴对称,解题时需要注意:平移的距离等于对应点连线的长度,对称轴为对应点连线的垂直平分线,旋转角为对应点与旋转中心连线的夹角的大小.17、2.5×1【解析】
先根据有理数的除法求出节约大米的千克数,再用科学计数法表示,对于一个绝对值较大的数,用科学记数法写成的形式,其中,n是比原整数位数少1的数.【详解】1300000000÷52÷1000(千克)=25000(千克)=2.5×1(千克).故答案为2.5×1.【点睛】本题考查了有理数的除法和正整数指数科学计数法,根据科学计算法的要求,正确确定出a和n的值是解答本题的关键.18、1.【解析】
∵AB=5,AD=12,∴根据矩形的性质和勾股定理,得AC=13.∵BO为Rt△ABC斜边上的中线∴BO=6.5∵O是AC的中点,M是AD的中点,∴OM是△ACD的中位线∴OM=2.5∴四边形ABOM的周长为:6.5+2.5+6+5=1故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)见解析;(2)顶点为(,﹣)【解析】
(1)根据题意,由根的判别式△=b2﹣4ac>0得到答案;(2)结合题意,根据对称轴x=﹣得到m=2,即可得到抛物线解析式为y=x2﹣5x+6,再将抛物线解析式为y=x2﹣5x+6变形为y=x2﹣5x+6=(x﹣)2﹣,即可得到答案.【详解】(1)证明:a=1,b=﹣(2m+1),c=m2+m,∴△=b2﹣4ac=[﹣(2m+1)]2﹣4×1×(m2+m)=1>0,∴抛物线与x轴有两个不相同的交点.(2)解:∵y=x2﹣(2m+1)x+m2+m,∴对称轴x=﹣==,∵对称轴为直线x=,∴=,解得m=2,∴抛物线解析式为y=x2﹣5x+6,∵y=x2﹣5x+6=(x﹣)2﹣,∴顶点为(,﹣).【点睛】本题考查根的判别式、对称轴和顶点,解题的关键是掌握根的判别式、对称轴和顶点的计算和使用.20、(1)证明见解析;(2)OC=15【解析】试题分析:(1)首选连接OD,易证得△COD≌△COB(SAS),然后由全等三角形的对应角相等,求得∠CDO=90°,即可证得直线CD是⊙O的切线;(2)由△COD≌△COB.可得CD=CB,即可得DE=2CD,易证得△EDA∽△ECO,然后由相似三角形的对应边成比例,求得AD:OC的值.试题解析:(1)连结DO.∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD.又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.3分又∵CO=CO,OD=OB∴△COD≌△COB(SAS)4分∴∠CDO=∠CBO=90°.又∵点D在⊙O上,∴CD是⊙O的切线.(2)∵△COD≌△COB.∴CD=CB.∵DE=2BC,∴ED=2CD.∵AD∥OC,∴△EDA∽△ECO.∴,∴.考点:1.切线的判定2.全等三角形的判定与性质3.相似三角形的判定与性质.21、(3)a=,方程的另一根为;(2)答案见解析.【解析】
(3)把x=2代入方程,求出a的值,再把a代入原方程,进一步解方程即可;(2)分两种情况探讨:①当a=3时,为一元一次方程;②当a≠3时,利用b2-4ac=3求出a的值,再代入解方程即可.【详解】(3)将x=2代入方程,得,解得:a=.将a=代入原方程得,解得:x3=,x2=2.∴a=,方程的另一根为;(2)①当a=3时,方程为2x=3,解得:x=3.②当a≠3时,由b2-4ac=3得4-4(a-3)2=3,解得:a=2或3.当a=2时,原方程为:x2+2x+3=3,解得:x3=x2=-3;当a=3时,原方程为:-x2+2x-3=3,解得:x3=x2=3.综上所述,当a=3,3,2时,方程仅有一个根,分别为3,3,-3.考点:3.一元二次方程根的判别式;2.解一元二次方程;3.分类思想的应用.22、(1)见解析;(2)1【解析】
(1)由矩形的性质可知∠A=∠C=90°,由翻折的性质可知∠A=∠F=90°,从而得到∠F=∠C,依据AAS证明△DCE≌△BFE即可;(2)由△DCE≌△BFE可知:EB=DE,依据AB=4,tan∠ADB=,即可得到DC,BC的长,然后再Rt△EDC中利用勾股定理列方程,可求得BE的长,从而可求得重叠部分的面积.【详解】解:(1)∵四边形ABCD是矩形,∴∠A=∠C=90°,AB=CD,由折叠可得,∠F=∠A,BF=AB,∴BF=DC,∠F=∠C=90°,又∵∠BEF=∠DEC,∴△DCE≌△BFE;(2)∵AB=4,tan∠ADB=,∴AD=8=BC,CD=4,∵△DCE≌△BFE,∴BE=DE,设BE=DE=x,则CE=8﹣x,在Rt△CDE中,CE2+CD2=DE2,∴(8﹣x)2+42=x2,解得x=5,∴BE=5,∴S△BDE=BE×CD=×5×4=1.【点睛】本题考查了折叠的性质、全等三角形的判定和性质以及勾股定理的综合运用,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.23、(1)直线l与⊙O相切;(2)证明见解析;(3)214【解析】试题分析:(1)连接OE、OB、OC.由题意可证明BE=(2)先由角平分线的定义可知∠ABF=∠CBF,然后再证明∠CBE=∠BAF,于是可得到∠EBF=∠EFB,最后依据等角对等边证明BE=EF即可;(3)先求得BE的长,然后证明△BED∽△AEB,由相似三角形的性质可求得AE的长,于是可得到AF的长.试题解析:(1)直线l与⊙O相切.理由如下:如图1所示:连接OE、OB、OC.∵AE平分∠BAC,∴∠BAE=∠CAE.∴BE=∴∠BOE=∠COE.又∵OB=OC,∴OE⊥BC.∵l∥BC,∴OE⊥l.∴直线l与⊙O相切.(2)∵BF平分∠ABC,∴∠ABF=∠CBF.又∵∠CBE=∠CAE=∠BAE,∴∠CBE+∠CBF=∠BAE+∠ABF.又∵∠EFB=∠BAE+∠ABF,∴∠EBF=∠EFB.∴BE=EF.(3)由(2)得BE=EF=DE+DF=1.∵∠DBE=∠BAE,∠DEB=∠BEA,∴△BED∽△AEB.∴DEBE=BEAE,即∴AF=AE﹣EF=494﹣1=21考点:圆的综合题.24、(1)①12,3.②详见解析.(2).【解析】分析:(1)①根据题意和表中的数据可以求得a的值;②由表格中的数据可以将频数分布表补充完整;(2)根据表格中的数据和测试成绩不低于80分为优秀,可以求得优秀率;(3)根据题意可以求得所有的可能性,从而可以得到小明与小强两名男同学能分在同一组的概率.详解:(1)①a=50﹣(6+8+14+10)=12,中位数为第25、26个数的平均数,而第25、26个数均落在第3组内,所以中位数落在第3组,故答案为12,3;②如图,(2)×100%=44%,答:本次测试的优秀率是44%;(3)设小明和小强分别为A、B,另外两名学生为:C、D,则所有的可能性为:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小强分在一起的概率为:.点睛:本题考查列举法求概率、频数分布表、频数分布直方图、中位数,解题的关键是明确题意,找出所求问题需要的条件,可以将所有的可能性都写出来,求出相应的概率.25、(1)①;②n≤1;(2)ac≤1,见解析.【解析】
(1)①△=1求解b=1,将点(3,1)代入平移后解析式,即可;②顶点为(1,)关于P(1,n)对称点的坐标是(﹣1,2n﹣),关于点P中心对称的新抛物线y'=(x+1)2+2n﹣=x2+x+2n,联立方程组即可求n的范围;(2)将点(c,1)代入y=ax2﹣bx+c得到ac﹣b+1=1,b=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 设备系统维保合同协议
- 2025幼儿园数学考试题与答案
- 第九章异步电动机基本结构和运行分析39课件
- 2025年酒店管理专业大学生考试卷及答案
- 第34届全国中学生物理竞赛复赛试题
- 快递代收委托协议书范本
- 品牌合作解除合同协议
- 快餐饭店转让合同协议
- 员工宿舍外包合同协议
- 2025年上海住房租赁合同范本参考
- 对我国地方档案立法原则的探讨
- 新209道100以内四个数字的加减法混合题目
- 山东省烟台市2024-2025学年高二地理下学期期末考试试题
- DBJ04∕T 290-2012 袖阀管注浆加固地基技术规程
- 非油气探矿权转让申请书
- 企业员工心理健康培训主题:构建和谐职场促进员工福祉
- 第七章第四节创新实验葡萄糖银镜反应实验的改进设计课件高一下学期化学人教版
- 2023年法律职业资格《客观题卷一》真题及答案
- 民宿合同转让协议书
- 五年级下学期科学立体小菜园课件
- 航天科工网上测评题库
评论
0/150
提交评论