2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)_第1页
2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)_第2页
2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)_第3页
2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)_第4页
2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年山西省晋中市普通高校对口单招数学自考预测试题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.函数f(x)的定义域是()A.[-3,3]B.(-3,3)C.(-,-3][3,+)D.(-,-3)(3,+)

2.直线:y+4=0与圆(x-2)2+(y+l)2=9的位置关系是()

A.相切B.相交且直线不经过圆心C.相离D.相交且直线经过圆心

3.圆心为(1,1)且过原点的圆的方程是()A.(x-l)2+(y-1)2=1

B.(x+1)2+(y+1)2=1

C.(x+1)2+(y+1)2=2

D.(x-1)2+(y-1)2=2

4.设a,b为实数,则a2=b2的充要条件是()A.a=bB.a=-bC.a2=b2

D.|a|=|b|

5.函数y=Asin(wx+α)的部分图象如图所示,则()A.y=2sin(2x-π/6)

B.y=2sin(2x-π/3)

C.y=2sin(x+π/6)

D.y=2sin(x+π/3)

6.若sinα与cosα同号,则α属于()A.第一象限角B.第二象限角C.第一、二象限角D.第一、三象限角

7.顶点坐标为(-2,-3),焦点为F(-4,3)的抛物线方程是()A.(y-3)2=-4(x+2)

B.(y+3)2=4(x+2)

C.(y-3)2=-8(x+2)

D.(y+3)2=-8(x+2)

8.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定

9.如果直线3x+y=1与2mx+4y-5=0互相垂直,则m为()A.1

B.

C.

D.-2

10.若a=(1/2)1/3,b=㏒1/32,c=㏒1/33,则a,b,c的大小关系是()A.b<a<cB.b<c<aC.a<b<cD.c<b<a

二、填空题(10题)11.

12.的值是

13.执行如图所示的程序框图,若输入的k=11,则输出的S=_______.

14.设全集U=R,集合A={x|x2-4<0},集合B={x|x>3},则_____.

15.以点(1,0)为圆心,4为半径的圆的方程为_____.

16.已知(2,0)是双曲线x2-y2/b2=1(b>0)的焦点,则b=______.

17.等差数列的前n项和_____.

18.

19.己知0<a<b<1,则0.2a

0.2b。

20.算式的值是_____.

三、计算题(5题)21.在等差数列{an}中,前n项和为Sn

,且S4

=-62,S6=-75,求等差数列{an}的通项公式an.

22.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。

23.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.

24.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.

25.已知函数f(x)的定义域为{x|x≠0},且满足.(1)求函数f(x)的解析式;(2)判断函数f(x)的奇偶性,并简单说明理由.

四、简答题(10题)26.已知的值

27.三个数a,b,c成等差数列,公差为3,又a,b+1,c+6成等比数列,求a,b,c。

28.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

29.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

30.一条直线l被两条直线:4x+y+6=0,3x-5y-6=0截得的线段中点恰好是坐标原点,求直线l的方程.

31.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

32.点A是BCD所在平面外的一点,且AB=AC,BAC=BCD=90°,BDC=60°,平面ABC丄平面BCD。(1)求证平面ABD丄平面ACD;(2)求二面角A-BD-C的正切值。

33.已知函数(1)求函数f(x)的最小正周期及最值(2)令判断函数g(x)的奇偶性,并说明理由

34.已知向量a=(1,2),b=(x,1),μ=a+2b,v=2a-b且μ//v;求实数x。

35.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

五、解答题(10题)36.在锐角△ABC中,内角A,B,C所对的边分别是a,b,c(1)求c的值;(2)求sinA的值.

37.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)

38.

39.

40.

41.

42.己知sin(θ+α)=sin(θ+β),求证:

43.如图,在三棱锥A-BCD中,AB丄平面BCD,BC丄BD,BC=3,BD=4,直线AD与平面BCD所成的角为45°点E,F分别是AC,AD的中点.(1)求证:EF//平面BCD;(2)求三棱锥A-BCD的体积.

44.解不等式4<|1-3x|<7

45.已知公差不为零的等差数列{an}的前4项和为10,且a2,a3,a7成等比数列.(1)求通项公式an;(2)设bn=2an求数列{bn}的前n项和Sn.

六、单选题(0题)46.若等比数列{an}满足,a1+a3=20,a2+a4=40,则公比q=()A.1B.2C.-2D.4

参考答案

1.B由题可知,3-x2大于0,所以定义域为(-3,3)

2.A直线与圆的位置关系.圆心(2,-1)到直线y=-4的距离为|-4-(-1)|=3,而圆的半径为3,所以直线与圆相切,

3.D圆的标准方程.圆的半径r

4.D

5.A三角函数图像的性质.由题图可知,T=2[π/3-(-π/6)]=π,所以ω=2,由五点作图法可知2×π/3+α=π/2,所以α=-π/6所以函数的解析式为y=2sin(2x-π/6)

6.D

7.C四个选项中,只有C的顶点坐标为(-2,3),焦点为(-4,3)。

8.A数值的大小判断

9.C由两条直线垂直可得:,所以答案为C。

10.D数值的大小关系.由于a>0,b<0,c<0,故a是最大值,而b=-㏒32,c=-㏒23,㏒32>-1>-㏒23即b>c,所以c<b<a

11.60m

12.

13.15程序框图的运算.模拟程序的运行,可得k=11,n=1,S=1不满足条件S>11,执行循环体,n=2,S=3,不满足条件S>11,执行循环体,n=3,S=6,不满足条件S>11,执行循环体,n=4,S=10,不满足条件S>11,执行循环体,N=5,S=15,此时,满足条件S>11,退出循环,输出S的值为15.故答案为15.

14.B,

15.(x-1)2+y2=16圆的方程.当圆心坐标为(x0,y0)时,圆的-般方程为(x-x0)+(y-y0)=r2.所以,(x-1)2+y2=16

16.

双曲线的性质.由题意:c=2,a=1,由c2=a2+b2.得b2=4-1=3,所以b=.

17.2n,

18.(-∞,-2)∪(4,+∞)

19.>由于函数是减函数,因此左边大于右边。

20.11,因为,所以值为11。

21.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-23

22.

23.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

24.

25.

26.

∴∴则

27.由已知得:由上可解得

28.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

29.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

30.

31.

32.分析:本题考查面面垂直的证明,考查二面角的正切值的求法。(1)推导出CD⊥AB,AB⊥AC,由此能证明平面ABD⊥平面ACD。

(2)取BC中点O,以O为原点,过O作CD的平行线为x轴,OC为y轴,OA为z轴,建立空间直角坐标系,利用向量法能求出二面角A-BD-C的正切值。解答:证明:(Ⅰ)∵面ABC⊥底面BCD,∠BCD=90°,面ABC∩面BCD=BC,

∴CD⊥平面ABC,∴CD⊥AB,

∵∠BAC=90°,∴AB⊥AC,

∵AC∩CD=C,

∴平面ABD⊥平面ACD。解:(Ⅱ)取BC中点O,∵面ABC⊥底面BCD,∠BAC=90°,AB=AC,

∴AO⊥BC,∴AO⊥平面BDC,

以O为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论