2022年浙江省温州市普通高校对口单招数学自考真题(含答案)_第1页
2022年浙江省温州市普通高校对口单招数学自考真题(含答案)_第2页
2022年浙江省温州市普通高校对口单招数学自考真题(含答案)_第3页
2022年浙江省温州市普通高校对口单招数学自考真题(含答案)_第4页
2022年浙江省温州市普通高校对口单招数学自考真题(含答案)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年浙江省温州市普通高校对口单招数学自考真题(含答案)学校:________班级:________姓名:________考号:________

一、单选题(10题)1.已知集合,A={0,3},B={-2,0,1,2},则A∩B=()A.空集B.{0}C.{0,3}D.{-2,0,1,2,3}

2.已知a=(1,-1),b=(-1,2),则(2a+b)×a=()A.1B.-1C.0D.2

3.椭圆x2/16+y2/9的焦点坐标为()A.(,0)(-,0)

B.(4,0)(-4,0)

C.(3,0)(-3,0)

D.(7,0)(-7,0)

4.函数的定义域()A.[3,6]B.[-9,1]C.(-∞,3]∪[6,+∞)D.(-∞,+∞)

5.下列结论中,正确的是A.{0}是空集

B.C.D.

6.A.(1,2)B.(3,4)C.(0,1)D.(5,6)

7.执行如图的程序框图,那么输出S的值是()A.-1B.1/2C.2D.1

8.已知角α的终边经过点P(2,-1),则(sinα-cosα)/(sinα+cosα)=()A.3B.1/3C.-1/3D.-3

9.A.B.(2,-1)

C.D.

10.设sinθ+cosθ,则sin2θ=()A.-8/9B.-1/9C.1/9D.7/9

二、填空题(10题)11.已知向量a=(1,-1),b(2,x).若A×b=1,则x=______.

12.

13.已知_____.

14.某程序框图如下图所示,该程序运行后输出的a的最大值为______.

15.

16.若f(x-1)=x2-2x+3,则f(x)=

17.

18.Ig0.01+log216=______.

19.

20.从含有质地均匀且大小相同的2个红球、N个白球的口袋中取出一球,若取到红球的概率为2/5,则取得白球的概率等于______.

三、计算题(5题)21.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

22.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.

23.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.

24.已知函数y=cos2x+3sin2x,x∈R求:(1)函数的值域;(2)函数的最小正周期。

25.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.

四、简答题(10题)26.已知抛物线的焦点到准线L的距离为2。(1)求拋物线的方程及焦点下的坐标。(2)过点P(4,0)的直线交拋物线AB两点,求的值。

27.己知边长为a的正方形ABCD,PA丄底面ABCD,PA=a,求证,PC丄BD

28.已知双曲线C:的右焦点为,且点到C的一条渐近线的距离为.(1)求双曲线C的标准方程;(2)设P为双曲线C上一点,若|PF1|=,求点P到C的左焦点的距离.

29.等比数列{an}的前n项和Sn,已知S1,S3,S2成等差数列(1)求数列{an}的公比q(2)当a1-a3=3时,求Sn

30.若α,β是二次方程的两个实根,求当m取什么值时,取最小值,并求出此最小值

31.证明上是增函数

32.已知等差数列{an},a2=9,a5=21(1)求{an}的通项公式;(2)令bn=2n求数列{bn}的前n项和Sn.

33.已知平行四边形ABCD中,A(-1,0),B(-1,-4),C(3,-2),E是AD的中点,求。

34.简化

35.某商场经销某种商品,顾客可采用一次性付款或分期付款购买,根据以往资料统计,顾客采用一次性付款的概率是0.6,求3为顾客中至少有1为采用一次性付款的概率。

五、解答题(10题)36.组成等差数列的三个正数的和等于15,并且这三个数列分别加上1、3、5后又成等比数列,求这三个数

37.

38.已知函数f(x)=4cosxsin(x+π/6)-1.(1)求f(x)的最小正周期;(2)求f(x)在区间[-π/6,π/4]上的最大值和最小值.

39.

40.

41.已知函数f(x)=ax2-6lnx在点(1,f(1))处的切线方程为y=1;(1)求实数a,b的值;(2)求f(x)的最小值.

42.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2

.

43.

44.数列的前n项和Sn,且求(1)a2,a3,a4的值及数列的通项公式(2)a2+a4+a6++a2n的值

45.已知函数f(x)=2sin(x-π/3).(1)写出函数f(x)的周期;(2)将函数f(x)图象上所有的点向左平移π/3个单位,得到函数g(x)的图象,写出函数g(x)的表达式,并判断函数g(x)的奇偶性.

六、单选题(0题)46.以点P(2,0),Q(0,4)为直径的两个端点的圆的方程是()A.(x-l)2+(y-2)2=5

B.(x-1)2+y2=5

C.(x+1)2+y2=25

D.(x+1)2+y=5

参考答案

1.B集合的运算.根据交集定义,A∩B={0}

2.A平面向量的线性运算.因为a=(1,-1),b=(-1,2),所以2a+b=2(1,-1)+(-1,2)=(1,0),得(2a+b)×a==(1,0)×(1,-1)=1

3.A椭圆的定义c2=a2-b2=7,所以c=,所以焦点坐标为(,0)(-,0).

4.A

5.B

6.A

7.C

8.D三角函数的化简求值.三角函数的定义.因为角a终边经过点P(2,-1),所以tanα=-1/2,sinα-cosα/sinα+cosα=tanα-1/tanα+1=(-1/2-1)f(-1/2+1)=-3

9.A

10.A三角函数的计算.因为sinθ+cosθ=1/3,(sinθ+cosθ)2=1/9=1+sin2θ所以sin2θ=-8/9

11.1平面向量的线性运算.由题得A×b=1×2+(-1)×x=2-x=1,x=1。

12.{x|0<x<3}

13.

14.45程序框图的运算.当n=1时,a=15;当时,a=30;当n=3,a=45;当n=4不满足循环条件,退出循环,输出a=45.

15.x+y+2=0

16.

17.

18.2对数的运算.lg0.01+lg216=lg1/100+㏒224=-2+4=2.

19.π/2

20.3/5古典概型的概率公式.由题可得,取出红球的概率为2/2+n=2/5,所以n=3,即白球个数为3,取出白球的概率为3/5.

21.

22.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

23.

24.

25.

26.(1)拋物线焦点F(,0),准线L:x=-,∴焦点到准线的距离p=2∴抛物线的方程为y2=4x,焦点为F(1,0)(2)直线AB与x轴不平行,故可设它的方程为x=my+4,得y2-4m-16=0由设A(x1,x2),B(y1,y2),则y1y2=-16∴

27.证明:连接ACPA⊥平面ABCD,PC是斜线,BD⊥ACPC⊥BD(三垂线定理)

28.(1)∵双曲线C的右焦点为F1(2,0),∴c=2又点F1到C1的一条渐近线的距离为,∴,即以解得b=

29.

30.

31.证明:任取且x1<x2∴即∴在是增函数

32.(1)∵a5=a2+3dd=4a2=a1+d∴an=a1+(n-1)d=5+4n-4=4n+1(2)

∴数列为首项b1=32,q=16的等比数列

33.平行四边形ABCD,CD为AB平移所得,从B点开始平移,于是C平移了(4,2),所以,D(-1+4,0+2)=(3,2),E是AD中点,E[(-1+3)/2,(0+2)/2]=(1,1)向量EC=(3-1,-2-1)=(2,-3),向量ED=(3-1,2-1)=(2,1)向量EC×向量ED=2×2+(-3)×1=1。

34.

35.

36.

37.

38.

39.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论