




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.已知菱形ABCD的面积是120,对角线AC=24,则菱形ABCD的周长是()A.52 B.40 C.39 D.262.已知y是x的正比例函数,且函数图象经过点,则在此正比例函数图象上的点是()A. B. C. D.3.下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形4.菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线互相平分且相等5.矩形的对角线一定()A.互相垂直平分且相等 B.互相平分且相等C.互相垂直且相等 D.互相垂直平分6.如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积是24,则FC等于()A.1 B.2 C.3 D.47.向一容器内均匀注水,最后把容器注满在注水过程中,容器的水面高度与时间的关系如图所示,图中PQ为一线段,则这个容器是(
)A. B. C. D.8.若等腰三角形的周长为60cm,底边长为xcm,一腰长为ycm,则y关于x的函数解析式及自变量x的取值范围是()A.y=60-2x(0<x<60) B.y=60-2x(0<x<30)C.y=(60-x)(0<x<60) D.y=(60-x)(0<x<30)9.如图,以正方形的边为一边向内作等边,连结,则的度数为()A. B. C. D.10.如图,在矩形ABCD中无重叠放入面积分别为16cm2和12cm2的两张正方形纸片,则图中空白部分的面积为()cm2.A.16- B.-12+ C.8- D.4-11.若正比例函数的图象经过点(2,4),则这个图象也必经过点()A.(2,1) B.(﹣1,﹣2) C.(1,﹣2) D.(4,2)12.如图,边长为1的正方形ABCD绕点A顺时针旋转30°到AB′C′D′的位置,则图中阴影部分的面积为()A. B. C. D.二、填空题(每题4分,共24分)13.已知一组数据3,7,7,5,x的平均数是5,那么这组数据的方差是_________.14.分式有意义的条件是______.15.化简:_____.16.一次函数y=2x的图象沿x轴正方向平移3个单位长度,则平移后的图象所对应的函数表达式为_____.17.计算-的结果是_________.18.如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,-2),则点F的坐标是三、解答题(共78分)19.(8分)先分解因式,再求值:,其中,.20.(8分)如图,在△AOB中,∠ABO=90°,OB=4,AB=8,直线y=-x+b分别交OA、AB于点C、D,且ΔBOD的面积是4.(1)求直线AO的解析式;(2)求直线CD的解析式;(3)若点M是x轴上的点,且使得点M到点A和点C的距离之和最小,求点的坐标.21.(8分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.22.(10分)如图(1)是超市的儿童玩具购物车,图(2)为其侧面简化示意图,测得支架AC=24cm,CB=18cm,两轮中心的距离AB=30cm,求点C到AB的距离.(结果保留整数)23.(10分)已知关于x、y的方程组的解都小于1,若关于a的不等式组恰好有三个整数解;⑴分别求出m与n的取值范围;⑵请化简:。24.(10分)如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,(1)求∠EAF的度数;(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ND2;(3)在图②中,若AG=12,BM=,直接写出MN的值.25.(12分)如图,点A的坐标为(﹣32(1)求过A,B两点直线的函数表达式;(2)过B点作直线BP与x轴交于点P,且使OP=2OA,求△ABP的面积.26.今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.
参考答案一、选择题(每题4分,共48分)1、A【解析】
先利用菱形的面积公式计算出BD=10,然后根据菱形的性质和勾股定理可计算出菱形的边长=13,从而得到菱形的周长.【详解】∵菱形ABCD的面积是120,即×AC×BD=120,∴BD==10,∴菱形的边长==13,∴菱形ABCD的周长=4×13=1.故选A.【点睛】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形的面积计算可利用平行四边形的面积公式计算,也可利用菱形面积=ab(a、b是两条对角线的长度)进行计算.2、D【解析】
利用待定系数法可求出正比例函数解析式,再利用一次函数图象上点的坐标特征可找出点(-4,6)在此正比例函数图象上,此题得解.【详解】解:设正比例函数解析式为y=kx(k≠0).∵正比例函数图象经过点(4,-6),∴-6=4k,∴.∵当x=-4时,y=x=6,∴点(-4,6)在此正比例函数图象上.故选D.【点睛】本题考查了待定系数法求正比例函数解析式以及一次函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx+b是解题的关键.3、D【解析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.4、C【解析】
菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【详解】菱形和矩形一定都具有的性质是对角线互相平分.故选C.【点睛】本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.5、B【解析】
根据矩形的性质对矩形的对角线进行判断即可.【详解】解:矩形的对角线一定互相平分且相等,故选:B.【点睛】此题考查矩形的性质,关键是根据矩形的对角线一定互相平分且相等解答.6、B【解析】
试题分析:由四边形ABCD是矩形与AB=6,△ABF的面积是14,易求得BF的长,然后由勾股定理,求得AF的长,根据折叠的性质,即可求得AD,BC的长,继而求得答案.解:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,∵AB=6,∴S△ABF=AB•BF=×6×BF=14,∴BF=8,∴AF===10,由折叠的性质:AD=AF=10,∴BC=AD=10,∴FC=BC﹣BF=10﹣8=1.故选B.考点:翻折变换(折叠问题).7、C【解析】
观察图象,开始上升缓慢,最后匀速上升,再针对每个容器的特点,选择合适的答案解答即可.【详解】根据图象,水面高度增加的先逐渐变快,再匀速增加;故容器从下到上,应逐渐变小,最后均匀.故选C.【点睛】此题考查函数的图象,解题关键在于结合实际运用函数的图像.8、D【解析】∵2y+x=60,∴y=(60-x)(0<x<30).故选D.9、C【解析】
在正方形ABCD中,△ABE是等边三角形,可求出∠AEB、∠DAE的大小以及推断出AD=AE,从而可求出∠AED,再根据角的和差关系求出∠BED的度数.【详解】解:在正方形ABCD中,∠ABC=90°,AB=BC.∵△ABE是等边三角形,∴∠AEB=∠BAE=60°,AE=AB,∴∠DAE=90°−60°=30°,AD=AE,∴∠AED=∠ADE=(180°−30°)=75°,∴∠BED=∠AEB+∠AED=60°+75°=135°.故选:C.【点睛】本题考查了正方形的性质、等边三角形的性质.根据正方形和等边三角形的性质推知AD=AE是解题的关键.10、B【解析】
根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴它们的边长分别为cm,cm,∴AB=4cm,BC=cm,∴空白部分的面积=×4−12−16=+16−12−16=cm2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长.11、B【解析】
设正比例函数解析式y=kx,将点(2,4)代入可求函数解析式y=2x,再结合选项进行判断即可.【详解】∵正比例函数的图象经过点(2,4),设正比例函数解析式y=kx,将点(2,4)代入可得k=2,∴函数解析式y=2x,将选项中点代入,可以判断(﹣1,﹣2)在函数图象上;故选:B.【点睛】考查正比例函数的图象及性质;熟练掌握函数图象的性质,会用待定系数法求函数解析式是解题的关键.12、C【解析】
设D′C′与BC的交点为E,连接AE,利用“HL”证明Rt△AD′E和Rt△ABE全等,根据全等三角形对应角相等∠BAE=∠D′AE,再根据旋转角求出∠BAD′=60°,然后求出∠BAE=30°,再解直角三角形求出BE,然后根据阴影部分的面积=正方形ABCD的面积-四边形ABED′的面积,列式计算即可得解.【详解】解:如图,D′C′与BC的交点为E,连接AE,在Rt△AD′E和Rt△ABE中,∵,∴Rt△AD′E≌Rt△ABE(HL),∴∠BAE=∠D′AE,∵旋转角为30°,∴∠BAD′=60°,∴∠BAE=×60°=30°,∴BE=1×=,∴阴影部分的面积=1×12×(×1×)=1.故选:C.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形判定与性质,解直角三角形,利用全等三角形求出∠DAE=∠B′AE,从而求出∠DAE=30°是解题的关键,也是本题的难点.二、填空题(每题4分,共24分)13、0.26【解析】
首先根据平均数算出x的值,然后利用方差的公式进行计算.【详解】解得:x=3故方差为0.26【点睛】本题考查数据方差的计算,务必记住方差计算公式为:14、x≠1【解析】分析:根据分母不为零分式有意义,可得答案.解:由有意义,得x﹣1≠0,解得x≠1有意义的条件是x≠1,故答案为:x≠1.15、【解析】
见详解.【详解】.【点睛】本题考查平方根的化简.16、y=2x﹣6【解析】分析:由函数y=2x的图象过原点可知,平移后的直线必过点(3,0),设平移后的直线的解析式为:y=2x+b,将点(3,0)代入其中,解得对应的b的值即可得到平移后的直线的解析式.详解:∵直线y=2x必过原点,∴将直线向右平移3个单位长度后的新直线必过点(3,0),设平移后的直线的解析式为:y=2x+b,则2×3+b=0,解得:b=-6,∴平移后的直线的解析式为:y=2x-6.故答案为:y=2x-6.点睛:本题解题有两个要点:(1)由直线y=2x必过原点可得平移后的直线必过点(3,0);(2)将直线y=kx+b平移后所得的新直线的解析式与原直线的解析式中,k的值相等.17、2【解析】
先利用算术平方根和立方根进行化简,然后合并即可.【详解】解:原式=4-2=2故答案为:2【点睛】本题考查了算术平方根和立方根的运算,掌握算术平方根和立方根是解题的关键.18、(,0).【解析】试题分析:∵正方形的顶点A(m,2),∴正方形的边长为2,∴BC=2,而点E(n,),∴n=2+m,即E点坐标为(2+m,),∴k=2•m=(2+m),解得m=1,∴E点坐标为(3,),设直线GF的解析式为y=ax+b,把E(3,),G(0,﹣2)代入得,解得,∴直线GF的解析式为y=x﹣2,当y=0时,x﹣2=0,解得x=,∴点F的坐标为(,0).考点:反比例函数与一次函数的交点问题.三、解答题(共78分)19、,1【解析】
先提取公因式,再利用完全平方公式进行因式分解,将,代入求解即可.【详解】解:==∵其中,∴原式=1.【点睛】本题考查了因式分解的问题,掌握完全平方公式是解题的关键.20、(1)y=2x;(2);(3)点M的坐标为(,0).【解析】
(1)先求出点A的坐标,然后设直线AO的解析式为y=kx,用待定系数法求解即可;(2)由面积法求出BD的长,从而求出点D的坐标,然后带入y=-x+b求解即可;(3)先求出点C的坐标,作点C关于x轴的对称点E,此时M到A、C的距离之和最小,求出直线AE的解析式,即可求出点M的坐标.【详解】(1)OB=4,AB=8,∠ABO=90°,∴A点坐标为(4,8),设直线AO的解析式为y=kx,则4k=8,解得k=2,即直线AO的解析式为y=2x;(2)OB=4,∠ABO=90°,=4,∴DB=2,∴D点的坐标为(4,2),把D(4,2)代入得:=6,∴直线CD的解析式为;(3)由直线与直线组成方程组为,解得:,∴点C的坐标为(2,4)如图,设点M使得MC+MA最小,作点C关于x轴的对称点E,可得点E的坐标为(2,-4),连结MC、ME、AE,可知MC=ME,所以M到A、C的距离之和MA+MC=MA+ME,又MA+ME大于等于AE,所以当MA+ME=AE时,M到A、C的距离之和最小,此时A、M、E成一条直线,M点是直线AE与在x轴的交点.所以设直线AE的解析式为,把A(4,8)和E(2,-4)代入得:,解得:,所以直线AE的解析式为,令得,所以点M的坐标为(,0).【点睛】本题考查了待定系数法求函数解析式,一次函数的交点等面积法求线段的长及轴对称最短问题,熟练掌握待定系数法是解答本题的关键.21、问题:甲、乙两种奖品的单价分别是多少元?每件甲种奖品为16元,每件乙种奖品为12元.【解析】
首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。【详解】问题:甲、乙两种奖品的单价分别是多少元?解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:160x=120(x+4)x=12经检验,x=12是原分式方程的解。则:x+4=16答:每件甲种奖品为16元,每件乙种奖品为12元.【点睛】本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。22、点C到AB的距离约为14cm.【解析】
通过勾股定理的逆定理来判断三角形ABC的形状,从而再利用三角形ABC的面积反求点C到AB的距离即可.【详解】解:过点C作CE⊥AB于点E,则CE的长即点C到AB的距离.在△ABC中,∵,,,∴,,∴,∴△ABC为直角三角形,即∠ACB=90°.……∵,∴,即,∴CE=14.4≈14.答:点C到AB的距离约为14cm.【点睛】本题的解题关键是掌握勾股定理的逆定理,能通过三角形面积反求对应的边长.23、(1)(2)2m-2n-1【解析】
(1)解关于x、y的不等式组,得﹣3<m<1.同理可以得出﹣5≤a≤.由于原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.(2)由m、n的取值范围得出m+3>0,1﹣m>0,2n+8>0,从而化简得出最后结果.【详解】(1),①+②得:2x=m+1,即x=<1;①﹣②得:4y=1﹣m,即y=<1,解得:﹣3<m<1;由a+2≥1得a≥﹣5,2n-3a≥1得a≤.所以﹣5≤a≤.原不等式组恰好有三个整数解,则-3≤<-2,解得-4≤n<﹣.(2)∵﹣3<m<1,∴m+3>0,1﹣m>0,2n+8>0原式=m+3﹣(1-m)-(2n+8)=2m-2n-1.【点睛】本题是考查解不等式组、绝对值的化简、算术平方根的化简、相反数的综合性题目,是中考常出现的题型.理解关于a的方程组恰好有三个整数解是解决本题的关键.24、(1)45°;(2)证明见解析;(3).【解析】
(1)∵正方形ABCD,AG⊥EF,∴AG=AB,∠ABE=∠AGE=∠BAD=90°,AE=AE,∴Rt△ABE≌Rt△AGE,∴∠BAE=∠GAE,同理Rt△ADF≌Rt△AGF,∴∠GAF=∠DAF,∴∠EA
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家庭关系与心理健康的关系
- 心理治疗细则
- 园艺工作环境与安全保障
- 2025重庆永川区双石镇招聘1人笔试备考题库及答案解析
- 2025重庆垫江县科学技术局公益性岗位人员招聘1人笔试备考题库及答案解析
- 农产品溯源追溯体系的信息化
- 2025浙江嘉兴市海宁市司法局招聘合同制人员1人笔试含答案
- 2025银行基金笔试题库及答案
- 2025天津市建华中学诚聘教师笔试备考试题及答案解析
- 创意无限的主题乐园
- 普惠性托育机构申请托育中心情况说明基本简介
- 绿色建筑材料
- 无违法犯罪记录证明申请表(个人)
- 18种食用油的常识及其功效
- 2023年全国卷英语甲卷讲评课件-2024届高考英语复习
- 全国宪法演讲比赛一等奖演讲稿
- 糖尿病慢性病中医药健康管理表
- 教科版五年级科学上册全册同步课时练习【含答案全册】
- 《湖心亭看雪》理解性默写(学生版+教师版)
- 拔尖人才培训班学习心得体会
- 精选工法桩安全技术交底记录表
评论
0/150
提交评论