浙江省杭州江干区六校联考2023年数学八年级第二学期期末经典模拟试题含解析_第1页
浙江省杭州江干区六校联考2023年数学八年级第二学期期末经典模拟试题含解析_第2页
浙江省杭州江干区六校联考2023年数学八年级第二学期期末经典模拟试题含解析_第3页
浙江省杭州江干区六校联考2023年数学八年级第二学期期末经典模拟试题含解析_第4页
浙江省杭州江干区六校联考2023年数学八年级第二学期期末经典模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.函数y=的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如图,双曲线与直线交于点M,N,并且点M坐标为(1,3)点N坐标为(-3,-1),根据图象信息可得关于x的不等式的解为()A. B.C. D.3.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是()A.,, B.,, C.,, D.,,4.如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为A.1 B.2C.3 D.45.正十边形的每一个内角的度数为()A.120∘ B.135∘ C.1446.完成以下任务,适合用抽样调查的是()A.调查你班同学的年龄情况B.为订购校服,了解学生衣服的尺寸C.对北斗导航卫星上的零部件进行检查D.考察一批炮弹的杀伤半径.7.已知一次函数y=kx+b的图象如图所示,则关于x的不等式的解集为A. B. C. D.8.在某中学理科竞赛中,张敏同学的数学、物理、化学得分(单位:分)分别为84,88,92,若依次按照4:3:3的比例确定理科成绩,则张敏的成绩是()A.84分 B.87.6分 C.88分 D.88.5分9.如图,△ABC中,∠C=900,∠CAB=600,AD平分∠BAC,点D到AB的距离DE=3cm,则BC等于()A.3cm B.6cm C.9cm D.12cm10.在同一平面直角坐标系中,函数与的图象大致是()A. B. C. D.二、填空题(每小题3分,共24分)11.一次函数y=2x+6的图象如图所示,则不等式2x+6>0的解集是________,当y≤3时,x的取值范围是________.12.在矩形中,,点是的中点,将沿折叠后得到,点的对应点为点.(1)若点恰好落在边上,则______,(2)延长交直线于点,已知,则______.13.已知直线y=2x+4与x轴、y轴分别交于A、B两点,点P(-1,m)为平面直角坐标系内一动点,若△ABP面积为1,则m的值为______.14.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,当两个三角形重叠部分的面积为32时,它移动的距离AA′等于________.15.在四边形ABCD中,AB=CD,请添加一个条件_____,使得四边形ABCD是平行四边形.16.一次函数y=kx+b的图象与函数y=2x+1的图象平行,且它经过点(﹣1,1),则此次函数解析式为_____.17.使有意义的的取值范围是______.18.如图,已知AB⊥CD,垂足为点O,直线EF经过O点,若∠1=55°,则∠COE的度数为______度.三、解答题(共66分)19.(10分)已知,如图,O为正方形对角线的交点,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.(1)求证:△BCE≌△DCF.(2)判断OG与BF有什么关系,证明你的结论.(3)若DF2=8-4,求正方形ABCD的面积?20.(6分)先化简,再求值:[其中,]21.(6分)如图,在正方形ABCD中,点E,F分别在边AD,CD上,(1)若AB=6,AE=CF,点E为AD的中点,连接AE,BF.①如图1,求证:BE=BF=3;②如图2,连接AC,分别交AE,BF于M,M,连接DM,DN,求四边形BMDN的面积.(2)如图3,过点D作DH⊥BE,垂足为H,连接CH,若∠DCH=22.5°,则的值为(直接写出结果).22.(8分)如图,在□ABCD中,E、F为对角线AC上的两点,且AE=CF.(1)求证:四边形DEBF是平行四边形;(2)如果DE=3,EF=4,DF=5,求EB、DF两平行线之间的距离.23.(8分)先化简,再求值(﹣)÷,其中a,b满足a+b﹣=1.24.(8分)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.25.(10分)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC的顶点都在格点上,请解答下列问题(1)画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1,并写出点C1的坐标;(2)画出将△ABC关于原点O对称的图形△A2B2C2,并写出点C2的坐标.26.(10分)折叠矩形ABCD,使点D落在BC边上的点F处.(1)求证:△ABF∽△FCE;(2)若DC=8,CF=4,求矩形ABCD的面积S.

参考答案一、选择题(每小题3分,共30分)1、B【解析】

首先根据分式有意义的条件知x≠0,然后分x>0和x<0两种情况,根据反比例函数的性质作答.注意本题中函数值y的取值范围.【详解】解:当x>0时,函数y=即y=,其图象在第一象限;当x<0时,函数y=即y=-,其图象在第二象限.

故选B.【点睛】反比例函数的性质:反比例函数y=的图象是双曲线.当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.2、D【解析】

求关于x的不等式<kx+b的解,就是看一次函数图象在反比例函数图象上方时点的横坐标的集合.【详解】∵点M坐标为(1,3),点N坐标为(-3,-1),∴关于x不等式<kx+b的解集为:-3<x<0或x>1,故选D.【点睛】此题主要考查了反比例函数与一次函数交点问题,利用图象求不等式的解时,关键是利用两函数图象的交点横坐标.3、C【解析】

先求出两小边的平方和,再求出大边的平方,看看是否相等即可.【详解】解:A、62+72≠82,所以以6,7,8为边的三角形不是直角三角形,故本选项不符合题意;

B、52+62≠82,所以以5,6,8为边的三角形不是直角三角形,故本选项不符合题意;

C、42+52=()2,所以以,4,5为边的三角形是直角三角形,故本选项符合题意;

D、42+52≠62,所以以4,5,6为边的三角形不是直角三角形,故本选项不符合题意;

故选:C.【点睛】本题考查了勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.4、A【解析】

由△ACD∽△ADB,根据相似三角形的对应边成比例,可得AC:AD=AD:AB,又由AC=4,AD=2,即可求得AB的长.【详解】∵△ACD∽△ADB,∴,∴AB==1,故选A.【点睛】考查相似三角形的性质,相似三角形对应边成比例.5、C【解析】

利用正十边形的外角和是360度,并且每个外角都相等,即可求出每个外角的度数;再根据内角与外角的关系可求出正十边形的每个内角的度数.【详解】解:∵一个十边形的每个外角都相等,

∴十边形的一个外角为360÷10=36°.

∴每个内角的度数为180°-36°=144°;

故选:C.【点睛】本题主要考查了多边形的内角与外角的关系.多边形的外角性质:多边形的外角和是360度.多边形的内角与它的外角互为邻补角.6、D【解析】

调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、人数不多,容易调查,宜采用全面调查;B、为订购校服,了解学生衣服的尺寸是要求精确度高的调查,适合全面调查;C、对北斗导航卫星上的零部件进行检查,因为调查的对象比较重要,应采用全面调查;D、考察一批炮弹的杀伤半径适合抽样调查;故选D.【点睛】本题主要考查了全面调查和抽样调查,解题时根据调查的对象的范围的大小作出判断,当范围较小时常常采用全面调查.7、B【解析】试题分析:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,∴b=-3k.将b=-3k代入k(x-4)-1b>0,得k(x-4)-1×(-3k)>0,去括号得:kx-4k+6k>0,移项、合并同类项得:kx>-1k;∵函数值y随x的增大而减小,∴k<0;将不等式两边同时除以k,得x<-1.故选B.考点:一次函数与一元一次不等式.8、B【解析】

根据加权平均数的计算方法进行计算即可得出答案.故选B.【详解】解:(分).【点睛】本题考查了加权平均数.理解“权”的含义是解题的关键.9、C【解析】

根据直角三角形两锐角互余求出∠B=30°,再根据直角三角形30°角所对的直角边等于斜边的一半可得BD=2DE,根据角平分线上的点到角的两边距离相等可得CD=DE,然后根据BC=BD+CD计算即可得解.【详解】解:∵∠C=90°,∠CAB=60°,

∴∠B=90°-60°=30°,

∵DE⊥AB,

∴BD=2DE=2×3=6cm,

∵AD平分∠BAC,∠C=90°,DE⊥B,

∴CD=DE=3cm,

∴BC=BD+CD=6+3=9cm.

故选:C.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形两锐角互余的性质以及直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图是解题的关键.10、C【解析】

分别讨论k>0和k<0时一次函数和二次函数的图像即可求解.【详解】当k>0时,函数y=kx+k的图象经过一、二、三象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴左部;当k<0时,函数y=kx+k的图象经过二、三、四象限;函数y=2x2+kx的开口向上,顶点坐标在x轴的下部,y轴右部;故C正确.故选C.【点睛】本题考查的是一次函数和二次函数的图像,熟练掌握两者是解题的关键.二、填空题(每小题3分,共24分)11、x>﹣3x≤﹣【解析】当x>−3时,2x+6>0;解不等式2x+6⩽3得x⩽﹣,即当x⩽﹣时,y⩽3.故答案为x>−3;x⩽﹣.12、6或【解析】

(1)由矩形的性质得出,,由折叠的性质得出,由平行线的性质得出,推出,得出,即可得出结果;(2)①当点在矩形内时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,,,由勾股定理即可求出;②当点在矩形外时,连接,由折叠的性质得出,,,由矩形的性质和是的中点,得出,,,由证得,得出,由,得出,由勾股定理得出:,即,即可求出.【详解】解:(1)四边形是矩形,,,由折叠的性质可知,,如图1所示:,,,,是的中点,,,(2)①当点在矩形内时,连接,如图2所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,,;②当点在矩形外时,连接,如图3所示:由折叠的性质可知,,,,四边形是矩形,是的中点,,,,在和中,,,,,,,即:,,解得:,(不合题意舍去),综上所述,或,故答案为(1)6;(2)或.【点睛】本题考查了折叠的性质、矩形的性质、平行线的性质、勾股定理、全等三角形的判定与性质等知识,熟练掌握折叠的性质、证明三角形全等并运用勾股定理得出方程是解题的关键.13、3或1【解析】

过点P作PE⊥x轴,交线段AB于点E,即可求点E坐标,根据题意可求点A,点B坐标,由可求m的值.【详解】解:∵直线y=2x+4与x轴、y轴分别交于A、B两点,∴当x=0时,y=4当y=0时,x=-2∴点A(-2,0),点B(0,4)如图:过点P作PE⊥x轴,交线段AB于点E∴点E横坐标为-1,∴y=-2+4=2∴点E(-1,2)∴|m-2|=1∴m=3或1故答案为:3或1【点睛】本题考查了一次函数图象上点的坐标特征,熟练运用一次函数的性质解决问题是本题的关键.14、1或8【解析】

由平移的性质可知阴影部分为平行四边形,设A′D=x,根据题意阴影部分的面积为(12−x)×x,即x(12−x),当x(12−x)=32时,解得:x=1或x=8,所以AA′=8或AA′=1.【详解】设AA′=x,AC与A′B′相交于点E,∵△ACD是正方形ABCD剪开得到的,∴△ACD是等腰直角三角形,∴∠A=15∘,∴△AA′E是等腰直角三角形,∴A′E=AA′=x,A′D=AD−AA′=12−x,∵两个三角形重叠部分的面积为32,∴x(12−x)=32,整理得,x−12x+32=0,解得x=1,x=8,即移动的距离AA′等1或8.【点睛】本题考查正方形和图形的平移,熟练掌握计算法则是解题关键·.15、AB//CD等【解析】

根据平行四边形的判定方法,结合已知条件即可解答.【详解】∵AB=CD,∴当AD=BC,(两组对边分别相等的四边形是平行四边形.)或AB∥CD(一组对边平行且相等的四边形是平行四边形.)时,四边形ABCD是平行四边形.故答案为AD=BC或者AB∥CD.【点睛】本题考查了平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形.16、y=2x+3【解析】

根据图象平行可得出k=2,再将(-1,1)代入可得出函数解析式.【详解】∵函数y=kx+b的图象平行于直线y=2x+1,∴k=2,将(-1,1)代入y=2x+b得:1=-2+b,解得:b=3,∴函数解析式为:y=2x+3,故答案为:y=2x+3.【点睛】本题考查了待定系数法求一次函数解析式,关键是掌握两直线平行则k值相同.17、【解析】

根据二次根式的被开方数是非负数和分式的分母不等于零进行解答.【详解】解:依题意得:且x-1≠0,解得.故答案为:.【点睛】本题考查了二次根式的意义和性质.概念:式子叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.18、1【解析】

根据邻补角的和是180°,结合已知条件可求∠COE的度数.【详解】∵∠1=55°,∴∠COE=180°-55°=1°.故答案为1.【点睛】此题考查了垂线以及邻补角定义,关键熟悉邻补角的和是180°这一要点.三、解答题(共66分)19、(2)证明见解析.(2)OG∥BF且OG=BF;证明见解析.(3)2.【解析】

(2)利用正方形的性质,由全等三角形的判定定理SAS即可证得△BCE≌△DCF;(2)首先证明△BDG≌△BGF,从而得到OG是△DBF的中位线,即可得出答案;(3)设BC=x,则DC=x,BD=x,由△BGD≌△BGF,得出BF=BD,CF=(-2)x,利用勾股定理DF2=DC2+CF2,解得x2=2,即正方形ABCD的面积是2.【详解】(2)证明:在△BCE和△DCF中,,∴△BCE≌△DCF(SAS);(2)OG∥BF且OG=BF,理由:如图,∵BE平分∠DBC,∴∠2=∠3,在△BGD和△BGF中,,∴△BGD≌△BGF(ASA),∴DG=GF,∵O为正方形ABCD的中心,∴DO=OB,∴OG是△DBF的中位线,∴OG∥BF且OG=BF;(3)设BC=x,则DC=x,BD=x,由(2)知△BGD≌△BGF,∴BF=BD,∴CF=(-2)x,∵DF2=DC2+CF2,∴x2+[(-2)x]2=8-4,解得x2=2,∴正方形ABCD的面积是2.考点:2.正方形的性质;2.全等三角形的判定与性质;3.勾股定理.20、【解析】分析:先化简,再把代入化简后的式子进行运算即可.详解:,当x=时,原式=点睛:本题考查了分式的化简求值.21、(1)①详见解析;②12;(2).【解析】

(1)①先求出AE=3,进而求出BE,再判断出△BAE≌△BCF,即可得出结论;②先求出BD=6,再判断出△AEM∽△CMB,进而求出AM=2,再判断出四边形BMDN是菱形,即可得出结论;(2)先判断出∠DBH=22.5°,再构造等腰直角三角形,设出DH,进而得出HG,BG,即可得出BH,结论得证.【详解】解:(1)①∵四边形ABCD是正方形,∴AB=BC=AD=6,∠BAD=∠BCD=90°,∵点E是中点,∴AE=AD=3,在Rt△ABE中,根据勾股定理得,BE==3,在△BAE和△BCF中,∴△BAE≌△BCF(SAS),∴BE=BF,∴BE=BF=3;②如图2,连接BD,在Rt△ABC中,AC=AB=6,∴BD=6,∵四边形ABCD是正方形,∴AD∥BC,∴△AEM∽△CMB,∴,∴,∴AM=AC=2,同理:CN=2,∴MN=AC﹣AM﹣CN=2,由①知,△ABE≌△CBF,∴∠ABE=∠CBF,∵AB=BC,∠BAM=∠BCN=45°,∴△ABM≌△CBN,∴BM=BN,∵AC是正方形ABCD的对角线,∴AB=AD,∠BAM=∠DAM=45°,∵AM=AM,∴△BAM≌△DAM,∴BM=DM,同理:BN=DN,∴BM=DM=DN=BN,∴四边形BMDN是菱形,∴S四边形BMDN=BD×MN=×6×2=12;(2)如图3,设DH=a,连接BD,∵四边形ABCD是正方形,∴∠BCD=90°,∵DH⊥BH,∴∠BHD=90°,∴点B,C,D,H四点共圆,∴∠DBH=∠DCH=22.5°,在BH上取一点G,使BG=DG,∴∠DGH=2∠DBH=45°,∴∠HDG=45°=∠HGD,∴HG=HD=a,在Rt△DHG中,DG=HD=a,∴BG=a,∴BH=BG+HG=A+A=(+1)a,∴.故答案为.【点睛】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,菱形的判定和性质,勾股定理,判断出四边形BMDN是菱形是解本题的关键.22、(1)详见解析;(2)2.1.【解析】

(1)根据平行四边形的性质可得AD=BC,AD∥BC,继而可得∠DAE=∠BCF,然后即可利用SAS证明△ADF≌△CBE,进一步即可证明DF=EB,DF∥EB,即可证得结论;(2)先根据勾股定理的逆定理得出DE⊥EF,然后根据三角形的面积即可求出结果.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠DAE=∠BCF,∵AE=CF,∴AF=CE,∴△ADF≌△CBE(SAS),∴DF=EB,∠DFA=∠BEC,∴DF∥EB,∴四边形DEBF是平行四边形;(2)解:∵,,∴,∴DE⊥EF.过点E作EG⊥DF于G,如图,则,即3×1=EG×5,∴EG=2.1.∴EB、DF两平行线之间的距离为2.1.【点睛】本题考查了平行四边形的性质和判定、全等三角形的判定和性质、两平行线之间的距离的定义、勾股定理的逆定理和三角形的面积等知识,属于常见题型,熟练掌握平行四边形的判定和性质是解题的关键.23、原式==2【解析】

原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式变形后代入计算即可求出值.【详解】(﹣)÷==由a+b﹣=1,得到a+b=,则原式==2.【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24、(1)证明见解析;(2)【解析】

(1)在△CAD中,由中位线定理得到MN∥AD,且MN=AD,在Rt△ABC中,因为M是AC的中点,故BM=AC,即可得到结论;(2)由∠BAD=60°且AC平分∠BAD,得到∠BAC=∠DAC=30°,由(1)知,BM=AC=AM=MC,得到∠BMC=60°.由平行线性质得到∠NMC=∠DAC=30°,故∠BMN=90°,得到,再由MN=BM=1,得到BN的长.【详解】(1)在△CAD中,∵M

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论