




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,把线段AB经过平移得到线段CD,其中A,B的对应点分别为C,D.已知A(﹣1,0),B(﹣2,3),C(2,1),则点D的坐标为()A..(1,4) B..(1,3) C..(2,4) D..(2,3)2.为了响应“绿水青山就是金山银山”的号召,建设生态文明,某工厂自2019年1月开始限产并进行治污改造,其月利润y(万元)与月份x之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是()A.4月份的利润为50万元B.污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元3.下列各点中,在函数y=-图象上的是()A. B. C. D.4.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中是中心对称图形的是()A. B. C. D.5.将长度为3cm的线段向上平移10cm,再向右平移8cm,所得线段的长是A.3cm B.8cm C.10cm D.无法确定6.一次函数y1=kx+b与y2=x+a图象如图:则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−A.1个 B.2个 C.3个 D.4个7.如图,已知直线a∥b∥c,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则的值为()A. B. C. D.8.代数式在实数范围内有意义,则的取值范围是()A. B. C. D.9.若点A(x1,y1)、B(x2,y2)、C(x3,y3)都在反比例函数的图象上,并且x1<0<x2<x3,则下列各式中正确的是()A.y1<y2<y3 B.y2<y3<y1 C.y1<y3<y2 D.y3<y1<y210.如果,那么()A.a≥﹣2 B.﹣2≤a≤3C.a≥3 D.a为一切实数二、填空题(每小题3分,共24分)11.如图在平面直角坐标系xOy中,直线l经过点A(-1,0),点A1,A2,A3,A4,A5,……按所示的规律排列在直线l上.若直线l上任意相邻两个点的横坐标都相差1、纵坐标也都相差1,若点An(n为正整数)的横坐标为2015,则n=___________.12.如图,在周长为26cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥AC交AD于E.则△CDE的周长为_____cm.13.如图,直线l1:y=x+n–2与直线l2:y=mx+n相交于点P(1,2).则不等式mx+n<x+n–2的解集为______.14.数据15、19、15、18、21的中位数为_____.15.如图是一辆慢车与一辆快车沿相同路线从地到地所行的路程与时间之间的函数图象,已知慢车比快车早出发小时,则、两地的距离为________
.16.亚洲陆地面积约为4400万平方千米,将44000000用科学记数法表示为_____.17.如图,在平面直角坐标系中,O为原点,四边形OABC是矩形,A(-10,0),C(0,3),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标是______.18.如图,▱ABCD的对角线AC,BD相交于点O,且AC=4,BD=7,CD=3,则△ABO周长是__.三、解答题(共66分)19.(10分)计算:+--20.(6分)(1);(2)21.(6分)如图,在菱形中,,垂足为点,且为边的中点.(1)求的度数;(2)如果,求对角线的长.22.(8分)为了贯彻落实市委政府提出的“精准扶贫”精神,某校特制定了一系列帮扶A、B两贫困村的计划,现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如表:车型目的地A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式.(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用.23.(8分)先化简,再求值:﹣÷,其中x=﹣1.24.(8分)已知:如图1,在平面直角坐标系中,直线与坐标轴分别相交于点,与直线相交于点.(1)求点的坐标;(2)若平行于轴的直线交于直线于点,交直线于点,交轴于点,且,求的值;(3)如图2,点是第四象限内一点,且,连接,探究与之间的位置关系,并证明你的结论.25.(10分)(1)解不等式组:.(2)解方程:.26.(10分)一次函数y=kx+b(k≠0)的图象经过点A(3,1)和点B(0,-2),(1)求一次函数的表达式;(2)若点C在y轴上,且S△ABC=2S△AOB,直接写出点C的坐标.
参考答案一、选择题(每小题3分,共30分)1、A【解析】
根据点A、C的坐标确定出平移规律,然后根据规律求解点D的坐标即可.【详解】∵A(﹣1,0)的对应点C的坐标为(2,1),∴平移规律为横坐标加3,纵坐标加1,∵点B(﹣2,3)的对应点为D,∴D的坐标为(1,4).故选A.【点睛】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减,本题根据对应点的坐标确定出平移规律是解题的关键.2、C【解析】
首先设反比例函数和一次函数的解析式,根据图像信息,即可得出解析式,然后即可判断正误.【详解】设反比例函数解析式为y=根据题意,图像过点(1,200),则可得出y=当x=4时,y=50,即4月份的利润为50万元,A选项正确;设一次函数解析式为y=kx+b根据题意,图像过点(4,50)和(6,110)则有4k+b=50解得k=30∴一次函数解析式为y=30x-70,其斜率为30,即污改造完成后每月利润比前一个月增加30万元,B选项正确;治污改造完成前后,1-6月份的利润分别为200万元、100万元、2003万元、50万元、110万元,共有3个月的利润低于100万元,C9月份的利润为30×9-70=200万元,D选项正确;故答案为C.【点睛】此题主要考查一次函数和反比例函数的实际应用,熟练掌握,即可解题.3、C【解析】
把各点代入解析式即可判断.【详解】A.∵(-2)×(-4)=8≠-6,∴此点不在反比例函数的图象上,故本选项错误;B.∵2×3=6≠-6,∴此点不在反比例函数的图象上,故本选项错误;C.∵(-1)×6=-6,∴此点在反比例函数的图象上,故本选项正确;D.∵×3=-≠-6,∴此点不在反比例函数的图象上,故本选项错误.故选C.【点睛】此题主要考查反比例函数的图像,解题的关键是将各点代入解析式.4、C【解析】试题解析:A、不是轴对称图形,也不是中心对称图形;
B、不是轴对称图形,不是中心对称图形;
C、是轴对称图形,也是中心对称图形;
D、是轴对称图形,不是中心对称图形.
故选C.点睛:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5、A【解析】
根据平移的基本性质,可直接求得结果.【详解】平移不改变图形的形状和大小,故线段的长度不变,长度是3cm,故选A.【点睛】本题考查了平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.6、C【解析】
根据一次函数的性质对①②进行判断;根据一次函数与一元一次不等式的关系,利用两函数图象的位置对③进行判断,联立方程解答即可.【详解】∵一次函数y1=kx+b的图象经过第二、四象限,∴k<0,所以①正确;∵一次函数y2=x+a的图象与y轴的交点在x轴下方,∴a<0,所以②错误;∵x<3时,一次函数y1=kx+b的图象都在函数y2=x+a的图象下方,∴不等式kx+b<x+a的解集为x<3,所以③正确。∵a=y−x,b=y−kx,∴a−b=3k−3,正确;故选C【点睛】本题考查一次函数与一元一次不等式,熟练掌握运算法则是解题关键.7、A【解析】
直接根据平行线分线段成比例定理求解.【详解】解:∵a∥b∥c,
∴.
故选:A.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.8、C【解析】
直接根据二次根式被开方数为非负数解题即可.【详解】由题意得:,∴.故选:C.【点睛】本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.9、B【解析】
先根据反比例函数的解析式判断出函数图象所在的象限,再根据x1<0<x2<x3即可得出结论.【详解】∵反比例函数y=﹣中k=﹣1<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内,y随x的增大而增大.∵x1<0<x2<x3,∴B、C两点在第四象限,A点在第二象限,∴y2<y3<y1.故选B.【点睛】本题考查了反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.本题也可以通过图象法求解.10、C【解析】
直接利用二次根式有意义的条件得出关于不等式组,解不等式组进而得到的取值范围.【详解】解:∵∴解得:故选:C【点睛】本题考查了二次根式有意义的条件以及解不等式组等知识点,能根据已知条件得到关于的不等式组是解题的关键.二、填空题(每小题3分,共24分)11、4031.【解析】试题分析:本题主要考查了一次函数图象上点的坐标特征,解题的关键是找出坐标的规律.观察①n为奇数时,横坐标纵坐标变化得出规律;②n为偶数时,横坐标纵坐标变化得出规律,再求解.试题解析:观察①n为奇数时,横坐标变化:-1+1,-1+2,-1+3,…-1+,纵坐标变化为:0-1,0-2,0-3,…-,②n为偶数时,横坐标变化:-1-1,-1-2,-1-3,…-1-,纵坐标变化为:1,2,3,…,∵点An(n为正整数)的横坐标为2015,∴-1+=2015,解得n=4031,故答案为4031.考点:一次函数图象上点的坐标特征.12、13.【解析】
利用垂直平分线性质得到AE=EC,△CDE的周长为ED+DC+EC=AE+ED+DC,为平行四边形周长的一半,故得到答案【详解】利用平行四边形性质得到O为AC中点,又有OE⊥AC,所以EO为AC的垂直平分线,故AE=EC,所以△CDE的周长为ED+DC+EC=AE+ED+DC=AD+CD,即为平行四边形周长的一半,得到△CDE周长为26÷2=13cm,故填13【点睛】本题主要考查垂直平分性性质,平行四边形性质等知识点,本题关键在于能够找到OE为垂直平分线13、>1【解析】∵直线l1:y=x+n-2与直线l2:y=mx+n相交于点P(1,2),∴关于x的不等式mx+n<x+n-2的解集为x>1,故答案为x>1.14、1【解析】
将这五个数排序后,可知第3位的数是1,因此中位数是1.【详解】将这组数据排序得:15,15,1,19,21,处于第三位是1,因此中位数是1,故答案为:1.【点睛】考查中位数的意义和求法,将一组数据排序后处在中间位置的一个数或两个数的平均数是中位数.15、1【解析】分析:根据数量关系“路程=速度×时间”结合函数图象,即可得出v快=v慢,设两车相遇的时间为t,根据数量关系“路程=速度×时间”即可得出t•v慢=(t-2)•v快=276,解之即可得出t与v慢的值,将慢车的速度代入s=18v慢中即可求出A、B两地的距离.详解:根据函数图象可知:s=(14-2)v快=18v慢,
∴v快=v慢.
设两车相遇的时间为t,
根据函数图象可知:t•v慢=(t-2)•v快=276,
解得:t=6,v慢=46,
∴s=18v慢=18×46=1.
故答案为1.点睛:考查了函数的图象以及解一元一次方程,根据数量关系结合函数图象找出快、慢两车速度间的关系是解题的关键.16、4.4×1【解析】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.详解:44000000=4.4×1,故答案为4.4×1.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.17、(-4,3),或(-1,3),或(-9,3)【解析】∵A(-10,0),C(0,3),,.∵点D是OA的中点,.当时,,.当时,,,当时,,.当时,不合题意.故答案有三种情况.【点睛】本题考查了矩形的性质,等腰三角形的概念,平面直角坐标系中点的坐标及分类的思想.涉及等腰三角形的计算,不管是角的计算还是腰的计算,一般都要进行分类讨论.像本题就要分四种情况进行计算.18、8.1.【解析】
直接利用平行四边形的性质得出AO=CO=2,BO=DO=,DC=AB=3,进而得出答案.【详解】∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,AB=CD=3,∵AC=4,BD=7,∴AO=2,OB=,∴△ABO的周长=AO+OB+AB=2++3=8.1.故答案为:8.1.【点睛】此题主要考查了平行四边形的性质以及三角形周长的计算,正确得出AO+BO的值是解题关键.三、解答题(共66分)19、2+3【解析】
根据二次根式的运算法则即可求出答案.【详解】原式=4+3﹣﹣=2+3【点睛】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算,本题属于基础题型.20、(1);(2)-5.【解析】
(1)首先根据立方根、零次幂、负指数幂和绝对值的性质化简,然后计算即可;(2)将二次根式化简,然后应用乘法分配律,进行计算即可.【详解】解:(1)原式;(2)原式.【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.21、(1);(2)【解析】
(1)根据线段垂直平分线的性质可得DB=AD,即可证△ADB是等边三角形,可得∠A=60°
(2)由题意可得∠DAC=30°,AC⊥BD,可得DO=2,AO=2,即可求AC的长.【详解】连接,(1)∵四边形是菱形∴∵是中点,∴∴∴是等边三角形∴.(2)∵四边形是菱形∴,,,∵∴,∴【点睛】本题考查了菱形的性质,熟练运用菱形性质解决问题是本题的关键.22、(1)大货车用8辆,小货车用7辆;(2)y=100x+1.(3)见解析.【解析】
(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为[7-(10-x)]辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案.【详解】(1)设大货车用x辆,小货车用y辆,根据题意得:解得:.∴大货车用8辆,小货车用7辆.(2)y=800x+900(8-x)+400(10-x)+600[7-(10-x)]=100x+1.(3≤x≤8,且x为整数).(3)由题意得:12x+8(10-x)≥100,解得:x≥5,又∵3≤x≤8,∴5≤x≤8且为整数,∵y=100x+1,k=100>0,y随x的增大而增大,∴当x=5时,y最小,最小值为y=100×5+1=9900(元).答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村.最少运费为9900元.23、【解析】分析:先根据分式混合运算的法则把原式进行化简,再把x的值代入进行计算即可.详解:原式=﹣•=﹣==当x=﹣1时,原式==.点睛:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.24、(1);(2)或;(3),理由见解析。【解析
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电瓶车电池安全知识培训课件
- 北京中考体育机考试题及答案
- 高炉炼铁安全知识培训课件
- Hesperidin-methylchalcone-Standard-生命科学试剂-MCE
- 1-2-Dilauroyl-sn-glycerol-Standard-生命科学试剂-MCE
- 北服广告传播考试流程及答案
- 大一宪法考试题及答案
- 级考试题及答案
- 电热毯相关知识培训内容课件
- 电源院设计知识培训课件
- (完整版)智能语音平台建设技术建议方案书
- 全册知识点(素材)六年级上册科学青岛版
- 2025年电工(技师)职业技能鉴定理论考试题(附答案)
- 心衰患者的麻醉处理1例课件
- 电竞酒店服务礼仪与职业素养培训
- 物业客服管家工作内容培训
- 梅大高速塌方灾害调查评估报告及安全警示学习教育
- 针灸在临床医学中的应用探讨
- 2023年高考英语试卷(新课标Ⅰ卷)含答案解析
- 学生生活全景模板
- 言语语言障碍康复护理
评论
0/150
提交评论