版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.若a,b为等腰△ABC的两边,且满足|a﹣5|+=0,则△ABC的周长为()A.9 B.12 C.15或12 D.9或122.下列各组数中,不是勾股数的是()A.3,4,5 B.5,12,13 C.6,8,10 D.7,13,183.若二次根式有意义,则的取值范围是()A. B. C. D.4.下列方程是关于的一元二次方程的是()A. B. C. D.5.一艘轮船在静水中的最大航速为,它以最大航速沿河顺流航行所用时间,和它以最大航速沿河逆流航行所用时间相等,设河水的流速为,则可列方程为()A. B. C. D.6.如图所示,在正方形ABCD中,点E,F分别在CD,BC上,且BF=CE,连接BE,AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BECC.∠AFB+∠BEC=90° D.AG⊥BE7.如图,在正方形中,,是对角线上的动点,以为边作正方形,是的中点,连接,则的最小值为()A. B. C.2 D.8.如图,在平面直角坐标系中,正方形OBCD的顶点O在坐标原点,点B的坐标为(2,5),点A在第二象限,反比例函数的图象经过点A,则k的值是()A. B. C. D.9.在分式中,的取值范围是()A. B. C. D.10.下列长度的四根木棒,能与长度分别为2cm和5cm的木棒构成三角形的是()A.3 B.4 C.7 D.10二、填空题(每小题3分,共24分)11.如图,函数y=3x和y=kx+6的图象相交于点A(a,3),则不等式3x≤kx+6的解集为_____.12.已知方程组的解为,则一次函数y=﹣x+1和y=2x﹣2的图象的交点坐标为_____.13.若不等式组无解,则a的取值范围是___.14.已知关于的一元二次方程有两个相等的实数根,则的值是__________.15.如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.16.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高度为1m,那么它的下部应设计的高度为_____.17.如图,在ΔABC中,AB=8,AC=6,∠BAC=30°,将ΔABC绕点A逆时针旋转60°得到△AB1C1,连接BC1,则BC1的长为________.18.直线关于轴对称的直线的解析式为______.三、解答题(共66分)19.(10分)在等腰三角形ABD中,ABAD.(I)试利用无刻度的直尺和圆规作图,求作:点C,使得四边形ABCD是菱形.(保留作图痕迹,不写作法和证明);(II)在菱形ABCD中,连结AC交BD于点O,若AC8,BD6,求AB边上的高h的长.20.(6分)目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广,为响应号召,某商场计划购进甲,乙两种节能灯共只,这两种节能灯的进价、售价如下表:进价(元/只)售价(元/只)甲型乙型(1)如何进货,进货款恰好为元?(2)设商场购进甲种节能灯只,求出商场销售完节能灯时总利润与购进甲种节能灯之间的函数关系式;(3)如何进货,商场销售完节能灯时获利最多且不超过进货价的,此时利润为多少元?21.(6分)已知点A及第一象限的动点,且,设△OPA的面积为S.(1)求S关于的函数解析式,并写出的取值范围;(2)画出函数S的图象,并求其与正比例函数的图象的交点坐标;(3)当S=12时,求P点坐标.22.(8分)因式分解:x2y﹣2xy2+y1.23.(8分)(1)计算(2)下面是小刚解分式方程的过程,请仔细阅读,并解答所提出的问题.解方程解:方程两边乘,得第一步解得第二步检验:当时,.所以,原分式方程的解是第三步小刚的解法从第步开始出现错误,原分式方程正确的解应是.24.(8分)我市晶泰星公司安排名工人生产甲、乙两种产品,每人每天生产件甲产品或件乙产品.根据市场行情测得,甲产品每件可获利元,乙产品每件可获利元.而实际生产中,生产乙产品需要数外支出一定的费用,经过核算,每生产件乙产品,当天每件乙产品平均荻利减少元,设每天安排人生产乙产品.(1)根据信息填表:产品种类每天工人数(人)每天产量(件)每件产品可获利润(元)甲乙(2)若每天生产甲产品可获得的利润比生产乙产品可获得的利润多元,试问:该企业每天生产甲、乙产品可获得总利润是多少元?25.(10分)先化简,再求值:(x﹣1+)÷,其中x的值从不等式组的整数解中选取.26.(10分)计算:
参考答案一、选择题(每小题3分,共30分)1、B【解析】
根据非负数的意义列出关于a、b的方程并求出a、b的值,再根据b是腰长和底边长两种情况讨论求解.【详解】解:根据题意得a-5=0,b-2=0,
解得a=5,b=2,
(1)若2是腰长,则三角形的三边长为:2、2、5,
不能组成三角形;
(2)若2是底边长,则三角形的三边长为:2、5、5,
能组成三角形,
周长为2+5+5=1.
故选B.【点睛】本题考查了等腰三角形的性质、非负数的性质及三角形三边关系;解题主要利用了非负数的性质,分情况讨论求解时要注意利用三角形的三边关系对三边能否组成三角形做出判断.2、D【解析】
根据勾股定理的逆定理,验证两小边的平方和是否等于最长边的平方即可得.【详解】A、32+42=52,能构成直角三角形,是正整数,故是勾股数;B、52+122=132,能构成直角三角形,是正整数,故是勾股数;C、62+82=102,能构成直角三角形,是正整数,故是勾股数;D、72+132≠182,不能构成直角三角形,故不是勾股数,故选D.【点睛】本题考查了勾股定理的逆定理,勾股数问题,给三个正整数,看两个较小的数的平方和是否等于最大数的平方,若相等,则这三个数为勾股数,否则就不是.3、C【解析】试题分析:由题意得,,解得.故选C.考点:二次根式有意义的条件.4、C【解析】
根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证.【详解】A.中含有4个未知数,所以错误;B.中含有分式,所以错误;C.化简得到,符合一元二次方程的定义,故正确;D.含有两个未知数,所以错误.故选择C.【点睛】本题考查一元二次方程的定义,解题的关键是掌握一元二次方程必须满足四个条件.5、C【解析】
分析题意,由江水的流速为vkm/h,可知顺水速度为(40+v)km/h,逆水速度为(40-v)km/h;
根据题意可得等量关系:以以最大航速沿河顺流航行所用时间和它以最大航速沿河逆流航行所用时间相等,根据顺流时间=逆流时间,列出方程即可.【详解】设水的流速为vkm/h,根据题意得:【点睛】本题考查了分式方程的应用,分析题意,根据路程、速度、时间的关系,找出等量关系是解题的关键。6、C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.7、A【解析】
取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,再根据正方形及勾股定理求出OE,即可得到GH的长.【详解】取AD中点O,连接OE,得到△ODE≌△HDG,得到OE=HG,当OE⊥AC时,OE有最小值,此时△AOE是等腰直角三角形,OE=AE,∵AD=AB=4,∴AO=AB=2在Rt△AOE中,由勾股定理可得OE2+AE2=AO2=4,即2OE2=4解得OE=∴GH的最小值为故选A.【点睛】本题考查了正方形的性质,根据题意确定E点的位置是解题关键.8、D【解析】
作AD⊥x轴于D,CE⊥x轴于E,先通过证得△AOD≌△OCE得出AD=OE,OD=CE,设A(x,),则C(,−x),根据正方形的性质求得对角线解得F的坐标,即可得出,解方程组求得k的值.【详解】作AD⊥x轴于D,CE⊥x轴于E,∵∠AOC=90,∴∠AOD+∠COE=90,∵∠AOD+∠OAD=90,∴∠OAD=∠COE,在△AOD和△OCE中,,∴△AOD≌△OCE(AAS),∴AD=OE,OD=CE,设A(x,),则C(,−x),∵AC和OB互相垂直平分,点B的坐标为(2,5),∴它们的交点F的坐标为(1,),∴,解得,∴k=−=,故选:D.【点睛】本题考查了反比例函数图象上点的坐标特征,待定系数法求解析式,正方形的性质,三角形求得的判定和性质,熟练掌握正方形的性质是解题的关键.9、A【解析】
根据分式有意义,分母不等于0列式计算即可得解.【详解】由题意得,x-1≠0,解得x≠1.故选A.【点睛】本题考查的是分式有意义的条件,解题的关键是掌握(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.10、B【解析】5-2=3,5+2=7,只有4在这两个数之间,故能构成三角形的只有B选项的木棒,故选B.点睛:本题主要考查三角形三边的关系,能正确地应用“两边之和大于第三边,两边之差小于第三边”是解题的关键.二、填空题(每小题3分,共24分)11、x≤1【解析】
先利用正比例函数解析式确定点坐标,然后利用函数图象,写出直线在直线上方所对应的自变量的范围即可.【详解】解:把代入得,解得,则,根据图象得,当时,.故答案为:【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数的值大于(或小于)0的自变量的取值范围;从函数图象的角度看,就是确定直线在轴上(或下)方部分所有的点的横坐标所构成的集合.12、(1,0)【解析】试题分析:二元一次方程组是两个一次函数变形得到的,所以二元一次方程组的解,就是函数图象的交点坐标试题解析:∵方程组的解为,∴一次函数y=-x+1和y=2x-2的图象的交点坐标为(1,0).考点:一次函数与二元一次方程(组).13、a<1.【解析】
解出不等式组含a的解集,与已知不等式组无解比较,可求出a的取值范围.【详解】解不等式3x﹣2≥,得:x≥1,解不等式x﹣a≤0,得:x≤a,∵不等式组无解,∴a<1,故答案为a<1.【点睛】此题考查解一元一次不等式组,解题关键在于掌握运算法则14、【解析】
根据方程有两个相等的实数根,可得b2-4ac=0,方程化为一般形式后代入求解即可.【详解】原方程化为一般形式为:mx2+(2m+1)x=0,∵方程有两个相等的实数根∴(2m+1)2-4m×0=0【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的根的判别式,本题属于基础题型.15、【解析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.【详解】解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,因为折痕相互垂直平分,所以四边形是菱形,而菱形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.故答案为:30°或60°.【点睛】本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.16、【解析】
设雕像的下部高为xm,则上部长为(1-x)m,然后根据题意列出方程求解即可.【详解】解:设雕像的下部高为xm,则题意得:,整理得:,解得:或(舍去);∴它的下部应设计的高度为.故答案为:.【点睛】本题考查了黄金分割,解题的关键在于读懂题目信息并列出比例式,难度不大.17、10.【解析】
根据题意可得∠BAC1=90°,根据旋转可知AC1=6,在RtΔBAC1中,利用勾股定理可求得BC1的长=.【详解】∵ΔABC绕点A逆时针旋转60°得到ΔAB1C1∴AC=AC1,∠CAC1=60°,∵AB=8,AC=6,∠BAC=30°,∴∠BAC1=90°,AB=8,AC1=6,∴在RtΔBAC1中,BC1的长=,故答案为:10.【点睛】本题考查了图形的旋转和勾股定理,通过理解题意将∠BAC1=90°找到即可解题.18、【解析】
设函数解析式为:y=kx+b,根据关于y轴对称的两直线k值互为相反数,b值相同可得出答案.【详解】∵y=kx+b和y=-3x+1关于y轴对称,∴可得:k=3,b=1.∴函数解析式为y=3x+1.故答案为:y=3x+1.【点睛】本题考查一次函数图象与几何变换,掌握直线关于y轴对称点的特点是关键.三、解答题(共66分)19、(I)见解析;(II)【解析】
(I)根据菱形的尺规作图的方法作图即可.(II)先由勾股定理可得出AB的长度,然后根据菱形的面积:即可求出h的长度.【详解】(I)如图,点是所求作的点,∴四边形是菱形.(II)如图:连接AC,交BD于点O.∵四边形是菱形,∴,,,在中,由勾股定理得:,∵,∴,解得:.【点睛】本题考查了菱形的尺规作图和菱形的性质,难点在于根据等面积法求出h的值.20、(1)乙型节能灯为800;(2);(3)购进乙型节能灯只时的最大利润为元.【解析】
(1)设商场购进甲型节能灯x只,则购进乙型节能灯(1200−x)只,根据两种节能灯的总价为46000元建立方程求出其解即可;(2)设商场应购进甲开型节能灯x只,根据题意列出函数解析式即可;(3)根据(2)的结论解答即可.【详解】(1)设商场应购进甲型节能灯只,则乙型节能灯为只.根据题意得,,解得,所以乙型节能灯为:;(2)设商场应购进甲型节能灯只,商场销售完这批节能灯可获利元.根据题意得,;(3)商场销售完节能灯时获利最多且不超过进货价的,,.,随的增大而减小,时,最大元.商场购进甲型节能灯只,购进乙型节能灯只时的最大利润为元.【点睛】此题考查一次函数的应用,一元一次不等式的应用,解题关键在于列出方程.21、(1)S=-4x+40(0<x<10);(2)(,);(3)P(7,3)【解析】
(1)根据△OAP的面积=OA×y÷2列出函数解析式,及点P(x,y)在第一象限内求出自变量的取值范围.(2)根据S=-4x+40画出函数图像,并与正比例函数S=2x联立方程组,即可求出交点坐标.(3)将S=12代入(1)求出的解析式中即可.【详解】解:(1)依题意有S=×8×(10-x)=-4x+40,
∵点P(x,y)在第一象限内,
∴x>0,y=10-x>0,
解得:0<x<10,
故关于x的函数解析式为:S=-4x+40(0<x<10);(2)∵解析式为S=-4x+40(0<x<10);
∴函数图象经过点(10,0)(0,40)(但不包括这两点的线段).
所画图象如下:令,解得,所以交点坐标为(,);(3)将S=12代入S=-4x+40,得:12=-4x+40,
解得:x=7,故点P(7,3).【点睛】本题考查的是一次函数的性质,熟知一次函数的图象与系数的关系是解答此题的关键.22、y(x﹣y)2【解析】
先提取公因式y,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.【详解】解:x2y﹣2xy2+y1=y(x2﹣2xy+y2)=y(x﹣y)2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.23、(1);(2)一,【解析】
(1)利用完全平方公式和单项式除以单项式的法则进行计算,然后合并同类项化简;(2)按照解分式方程的步骤进行判断发现小刚在第一步去分母时,常数项2漏乘,然后进行正确的解方程计算,从而求解即可.【详解】解:(1)====(2)小刚的解法从第一步开始出现错误解方程解:方程两边乘,得解得检验:当时,.所以,原分式方程的解是故答案为:一,【点睛】本题考查整式的混合运算及解分式方程,掌握完全平方公式的结构及解分式方程的步骤,正确计算是本题的解题关键.24、(1);;;(2)该企业每天生产甲、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 酒业市场分析与发展战略
- 党员委托培训合同范本
- 合伙投资劳务合同范本
- 关于纯净水合同协议书
- 农民承包小麦合同范本
- 合同期限延续补充协议
- 剧院装修设计合同范本
- 初次签订聘用合同范本
- 公司收购玉米合同范本
- 农村房屋交换合同协议
- 2025人民出版社供小学用中华民族大家庭教学课件:第7课 中华民族的语言文字 含多个微课视频
- GJB2460A-2020军用夹布橡胶软管规范
- 2025入团培训结业考试题库带答案详解(a卷)
- 中药煎药培训知识课件
- 2025至2030中国智能炒菜机行业项目调研及市场前景预测评估报告
- 数字媒体技术就业能力展示
- 大学生新生心理健康教育
- 慢性炎性脱髓鞘性多发性神经根神经病诊疗指南(2025年版)
- 呼吸内科利用PDCA循环提高患者无创呼吸机有效使用率品管圈
- 企业邀请招标管理办法
- 2025成人高考政治真题及答案
评论
0/150
提交评论