




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年八下数学期末模拟试卷注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.当x=3时,函数y=-2x+1的值是()A.3 B.-5 C.7 D.52.下列图案,既是轴对称图形又是中心对称图形的个数是().A.1 B.2 C.3 D.43.下列运算,正确的是()A. B. C. D.4.为了解我校初三年级所有同学的数学成绩,从中抽出500名同学的数学成绩进行调查,抽出的500名考生的数学成绩是()A.总体 B.样本 C.个体 D.样本容量5.无论k为何值时,直线y=k(x+3)+4都恒过平面内一个定点,这个定点的坐标为()A.(3,4) B.(3,﹣4) C.(﹣3,﹣4) D.(﹣3,4)6.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数,中位数分别为()A.3.5,3 B.3,4 C.3,3.5 D.4,37.将点A(-2,-3)向左平移3个单位,再向上平移2个单位得到点B,则B的坐标是()A.(1,-3) B.(-2,1) C.(-5,-1) D.(-5,-5)8.分式方程的解为()A. B. C. D.9.如图,在▱ABCD中,∠A=140°,则∠B的度数是()A.40° B.70° C.110° D.140°10.一个正多边形每个外角都是30°,则这个多边形边数为()A.10 B.11 C.12 D.1311.在一次数学测试中,将某班51名学生的成绩分为5组,第一组到第四组的频率之和为1.8,则第5组的频数是()A.11 B.9 C.8 D.712.如图,□ABCD中,EF过对角线的交点O,AB=4,AD=3,OF=1.3,则四边形BCEF的周长为()A.8.3 B.9.6 C.12.6 D.13.6二、填空题(每题4分,共24分)13.如图,在矩形ABCD中,AD=10,AB=8,点P在AD上,且BP=BC,点M在线段BP上,点N在线段BC的延长线上,且MP=NC,连接MN交线段PC于点F,过点M作ME⊥PC于点E,则EF=_______.14.在菱形中,,为中点,为对角线上一动点,连结和,则的值最小为_______.15.如图,直线,直线分别交,,于点,,,直线分别交,,于点,,.若,则______.16.如图,点D是直线外一点,在上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________.17.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E.F分别是AO、AD的中点,若AC=8,则EF=___.18.如图所示,折叠矩形的一边AD,使点D落在边BC的点F处,已知AB=8cm,BC=10cm,则EC的长为_____cm.三、解答题(共78分)19.(8分)下面是小颖化简整式的过程,仔细阅读后解答所提出的问题.解:x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2+2x+1+2x第一步=2xy+4x+1第二步(1)小颖的化简过程从第步开始出现错误;(2)对此整式进行化简.20.(8分)某服装公司招工广告承诺:熟练工人每月工资至少4000元.每天工作8小时,一个月工作25天.月工资底薪1000元,另加计件工资.加工1件A型服装计酬20元,加工1件B型服装计酬15元.在工作中发现一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时.(工人月工资=底薪+计件工资)(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?21.(8分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是甲乙两车离A地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离A地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)若它们出发第5小时时,离各自出发地的距离相等,求乙车离A地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.22.(10分)在平面直角坐标系中,一次函数的图象经过点.(1)当时,且正比例函数的图象经过点.①若,求的取值范围;②若一次函数的图象为,且不能围成三角形,求的值;(2)若直线与轴交于点,且,求的数量关系.23.(10分)图1,图2是两张形状、大小完全相同的6×6方格纸,方格纸中的每个小长方形的边长为1,所求的图形各顶点也在格点上.(1)在图1中画一个以点,为顶点的菱形(不是正方形),并求菱形周长;(2)在图2中画一个以点为所画的平行四边形对角线交点,且面积为6,求此平行四边形周长.24.(10分)阅读下列一段文字,然后回答下列问题:已知平面内两点P1(x1,y1),P2(x2,y2),其两点间的距离。例如:已知P(3,1),Q(1,-2),则这两点间的距离.特别地,如果两点M(x1,y1),N(x2,y2),所在的直线与坐标轴重合或平行于坐标轴或者垂直于坐标轴,那么这两点间的距离公式可简化为或。(1)已知A(2,3),B(-1,-2),则A,B两点间的距离为_________;(2)已知M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,则M,N两点间的距离为_________;(3)在平面直角坐标系中,已知A(0,4),B(4,2),在x轴上找点P,使PA+PB的长度最短,求出点P的坐标及PA+PB的最短长度.25.(12分)已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.(1)求证:△ADE≌△CBF;(2)若四边形BEDF是菱形,求四边形AGBD的面积.26.如图,点E,F在菱形ABCD的对边上,AE⊥BC.∠1=∠1.(1)判断四边形AECF的形状,并证明你的结论.(1)若AE=4,AF=1,试求菱形ABCD的面积.
参考答案一、选择题(每题4分,共48分)1、B【解析】
把x=3代入解析式进行计算即可得.【详解】当x=3时,y=-2x+1=-2×3+1=-5,故选B.【点睛】本题考查了求函数值,正确把握求解方法是解题的关键.2、C【解析】
根据轴对称图形与中心对称图形的概念求解.【详解】解:第一个图形是轴对称图形,是中心对称图形;
第二个图形是轴对称图形,不是中心对称图形;
第三个图形是轴对称图形,是中心对称图形;
第四个图形是轴对称图形,是中心对称图形.
共有3个图形既是轴对称图形,也是中心对称图形,
故选:C.【点睛】此题主要考查了中心对称图形与轴对称图形,判断轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.3、D【解析】
分别根据同底数幂的乘除运算法则以及幂的乘方和合并同类项法则求出即可.【详解】A选项:m•m2•m3=m6,故此选项错误;
B选项:m2+m2=2m2,故此选项错误;
C选项:(m4)2=m8,故此选项错误;
D选项:(-2m)2÷2m3=,此选项正确.
故选:D.【点睛】考查了同底数幂的乘除运算法则以及幂的乘方和合并同类项法则等知识,熟练应用运算法则是解题关键.4、B【解析】
根据总体、个体、样本、样本容量的定义逐个判断即可.【详解】解:抽出的500名考生的数学成绩是样本,故选B.【点睛】本题考查了总体、个体、样本、样本容量等知识点,能熟记总体、个体、样本、样本容量的定义是解此题的关键.5、D【解析】
先变式解析式得到k的不定方程x+3)k=y-4,由于k有无数个解,则x+3=0且y-4=0,然后求出x、y的值即可得到定点坐标;【详解】解:∵y=k(x+3)+4,∴(x+3)k=y-4,∵无论k怎样变化,总经过一个定点,即k有无数个解,∴x+3=0且y-4=0,∴x=-3,y=4,∴一次函数y=k(x+3)+4过定点(-3,4);故选D.【点睛】本题主要考查了一次函数图象上点的坐标特征,掌握一次函数图象上点的坐标特征是解题的关键.6、A【解析】
根据题意可知x=2,然后根据平均数、中位数的定义求解即可.【详解】∵这组数据的众数是2,∴x=2,将数据从小到大排列为:2,2,2,4,4,7,则平均数=(2+2+2+4+4+7)÷6=1.5中位数为:(2+4)÷2=1.故选A【点睛】本题考查了众数、中位数及平均数的定义,属于基础题,掌握基本定义是关键.7、C【解析】由题中平移规律可知:点B的横坐标为-2-3=-5;纵坐标为-3+2=-1,可知点B的坐标是(-5,-1).故选C.8、C【解析】
先解分式方程,最后检验即可得到答案.【详解】解:3(x-2)=x2x=6x=3由3-2≠0,故x=3是方程的解,即答案为C.【点睛】本题考查了解分式方程,其中解方程是关键,检验是易错点.9、A【解析】
根据平行四边形的性质可知AD∥BC,从而∠A+∠B=180°,即可求出答案.【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=180°-140°=40°.故选A.【点睛】此题主要考查了平行四边形的性质,灵活的应用平行四边形的性质是解决问题的关键.10、C【解析】根据多边形的边数等于360°除以每一个外角的度数列式计算即可得解.
解答:360°÷30°=1.
故选C.
“点睛”本题考查了多边形的内角与外角,熟练掌握多边形的外角和、多边形的每一个外角的度数、多边形的边数三者之间的关系是解题的关键.11、A【解析】
频率总和为1,由此求出第五组的频率,然后由频率是频数与总数之比,求出频数即可.【详解】解:第五组的频率为,所以第五组的频数为.故答案为:A【点睛】本题考查了频率频数,掌握频率频数的定义是解题的关键.12、B【解析】解:根据平行四边形的中心对称性得:OF=OE=1.1.∵▱ABCD的周长=(4+1)×2=14∴四边形BCEF的周长=×▱ABCD的周长+2.2=9.2.故选B.二、填空题(每题4分,共24分)13、【解析】
过点M作MH∥BC交CP于H,根据两直线平行,同位角相等可得∠MHP=∠BCP,两直线平行,内错角相等可得∠NCF=∠MHF,根据等边对等角可得∠BCP=∠BPC,然后求出∠BPC=∠MHP,根据等角对等边可得PM=MH,根据等腰三角形三线合一的性质可得PE=EH,利用“角边角”证明△NCF和△MHF全等,根据全等三角形对应边相等可得CF=FH,从而求出EF=CP,根据矩形的对边相等可得BC=AD=10,再利用勾股定理列式求出AP,然后求出PD,再次利用勾股定理列式计算即可求出CP,从而得解.【详解】如图,过点M作MH∥BC交CP于H,
则∠MHP=∠BCP,∠NCF=∠MHF,
∵BP=BC,
∴∠BCP=∠BPC,
∴∠BPC=∠MHP,
∴PM=MH,
∵PM=CN,
∴CN=MH,
∵ME⊥CP,
∴PE=EH,
在△NCF和△MHF中,
,
∴△NCF≌△MHF(AAS),
∴CF=FH,
∴EF=EH+FH=CP,
∵矩形ABCD中,AD=10,
∴BC=AD=10,
∴BP=BC=10,
在Rt△ABP中,AP===6,
∴PD=AD−AP=10−6=4,
在Rt△CPD中,CP===,
∴EF=CP=×=.
故答案为:.【点睛】本题考查等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质,解题的关键是掌握等腰三角形的性质、勾股定理和全等三角形的判定(AAS)与性质.14、2【解析】
根据轴对称的性质,作点E′和E关于BD对称.则连接AE′交BD于点P,P即为所求作的点.PE+PA的最小值即为AE′的长.【详解】作点E′和E关于BD对称.则连接AE′交BD于点P,
∵四边形ABCD是菱形,AB=4,E为AD中点,
∴点E′是CD的中点,
∴DE′=DC=×4=2,AE′⊥DC,
∴AE′=.
故答案为2.【点睛】此题考查轴对称-最短路线问题,熟知“两点之间线段最短”是解题的关键.15、【解析】
先由,根据比例的性质可得,再根据平行线分线段成比例定理求解即可.【详解】解:∴故答案为。【点睛】本题考查了平行线分线段成比例定理,掌握三条平行线截两条直线,所得的对应线段成比例是解题的关键。16、两组对边分别相等的四边形是平行四边形.【解析】
先根据分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,得出AB=DC,AD=BC,根据“两组对边分别相等的四边形是平行四边形”可判断四边形ABCD是平行四边形.【详解】解:根据尺规作图的作法可得,AB=DC,AD=BC,
∴四边形ABCD是平行四边形(两组对边分别相等的四边形是平行四边形)
故答案为两组对边分别相等的四边形是平行四边形.【点睛】本题主要考查了平行四边形的判定,解题时注意:两组对边分别相等的四边形是平行四边形.符号语言为:∵AB=DC,AD=BC,∴四边形ABCD是平行四边形.17、2【解析】
由矩形的性质可知:矩形的两条对角线相等,可得BD=AC=8,即可得OD=4,在△AOD中,EF为△AOD的中位线,由此可求的EF的长.【详解】∵四边形ABCD为矩形,∴BD=AC=8,又∵矩形对角线的交点等分对角线,∴OD=4,又∵在△AOD中,EF为△AOD的中位线,∴EF=2.故答案为2.【点睛】此题考查三角形中位线定理,解题关键在于利用矩形的性质得到BD=AC=818、2【解析】试题解析:∵D,F关于AE对称,所以△AED和△AEF全等,∴AF=AD=BC=10,DE=EF,设EC=x,则DE=8-x.∴EF=8-x,在Rt△ABF中,BF==6,∴FC=BC-BF=1.在Rt△CEF中,由勾股定理得:CE2+FC2=EF2,即:x2+12=(8-x)2,解得x=2.∴EC的长为2cm.考点:1.勾股定理;2.翻折变换(折叠问题).三、解答题(共78分)19、(1)一;(2)2xy﹣1.【解析】
(1)注意去括号的法则;(2)根据单项式乘以多项式、完全平方公式以及去括号的法则进行计算即可.【详解】解:(1)括号前面是负号,去掉括号应变号,故第一步出错,故答案为一;(2)x(x+2y)﹣(x+1)2+2x=x2+2xy﹣x2﹣2x﹣1+2x=2xy﹣1.20、(1)一名熟练工加工1件A型服装和1件B型服装各需要2小时和1小时;(2)该服装公司执行规定后违背了广告承诺.【解析】
(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,根据“一名熟练工加工2件A型服装和3件B型服装需7小时,加工1件A型服装和2件B型服装需4小时”,列出方程组,即可解答.
(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8-2a)件.从而得到W=﹣10a+4000,再根据“加工A型服装数量不少于B型服装的一半”,得到a≥50,利用一次函数的性质,即可解答.【详解】解:(1)设熟练工加工1件A型服装需要x小时,加工1件B型服装需要y小时,由题意得:解得:答:熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时.
(2)当一名熟练工一个月加工A型服装a件时,则还可以加工B型服装(25×8﹣2a)件.∴W=20a+15(25×8﹣2a)+1000,∴W=﹣10a+4000,又∵解得:a≥50,∵﹣10<0,∴W随着a的增大则减小,∴当a=50时,W有最大值1.∵1<4000,∴该服装公司执行规定后违背了广告承诺.【点睛】考查一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目,列出方程是解题的关键.21、(1);(2)140千米,y乙=300﹣28x,(0≤x≤);(3)或小时【解析】
(1)由图知,该函数关系在不同的时间里表现出不同的关系,需分段表达,可根据待定系数法列方程,求函数关系式.(2)根据题意求出乙车速度,列出y乙与行驶时间x的函数关系式;(3)联立方程分段求出相遇时间.【详解】(1)由图象可知,甲车由A到B的速度为300÷3=100千米/时,由B到A的速度为千米/时,则当0≤x≤3时:y甲=100x,当3≤x≤时:y甲=300﹣80(x﹣3)=﹣80x+540,∴y甲=,(2)当x=5时,y甲=﹣80×5+540=140(千米),则第5小时时,甲距离A140千米,则乙距离B140千米,则乙的速度为140÷5=28千米/时,则y乙=300﹣28x(0≤x≤),(3)当0≤x≤3时,100x=300﹣28x,解得x=.当3≤x≤时,300﹣28x=﹣80x+540,x=.∴甲、乙两车相遇的时间为或小时,【点睛】本题考查了一次函数的应用,解题的关键是明确题意,利用数形结合的思想解答本题.22、(1)①;②的值为或1或;(2).【解析】
(1)用待定系数法求出B点坐标,再求得正比例函数解析式,①由函数值的大小关系列出x的不等式,便可求得x的取值范围;②当l3过l1与l2的交点和l3与l1或l2平行时,l1,l2,l3不能围成三角形,由此求出k3;(2)根据题意求得k1=-2,则y1=-2x+4m,代入(n,0),即可得到m,n的数量关系.【详解】解:(1)依题意,得:,图象经过点,所以,,解得:所以,,正比例函数的图象经过点,所以,,解得:,所以,,。①若,则,解得,;②若,,不能围成三角形,则或,或经过与的交点,∵为:,为,解,解得,∴交点,代入得,,解得,∴的值为或1或;(2)∵一次函数的图象经过点,∴①直线与轴交于点,∴②∴①×2+②得,,∵,∴,∴一次函数为,∵经过∴,∴.【点睛】本题考查了一次函数和一元一次不等式,一次函数的图象以及一次函数的性质,明确不能构成三角形的三种情况是解题的关键.23、(1)图见解析;菱形周长为;(2)图见解析;平行四边形的周长为6+2.【解析】
(1)以AB为一边,根据菱形的四条边相等进行作图即可,求出AB的长,即可得到菱形的周长;(2)根据点A为所画的平行四边形对角线交点且面积为6进行作图即可,然后再利用勾股定理求平行四边形的周长即可.【详解】解:(1)如图所示,菱形ABCD即为所求,∵AB=,∴菱形ABCD的周长=;(2)如图所示,平行四边形BCDE即为所求,∵BC=3,CD=,∴平行四边形BCDE的周长=2×(3+)=6+2.【点睛】本题主要考查了菱形的性质、平行四边形的性质以及勾股定理,解题时首先要理解题意,弄清问题中对所作图形的要求,结合对应几何图形的性质和基本作图的方法作图.24、(1);(2)5;(3)PA+PB的长度最短时,点P的坐标为(,0),PA+PB的最短长度为.【解析】
(1)直接利用两点之间距离公式直接求出即可;
(2)根据题意列式计算即可;
(3)利用轴对称求最短路线方法得出P点位置,进而求出PA+PB的最小值.【详解】(1)(1)∵A(2,3),B(-1,-2),
∴A,B两点间的距离为:;(2)∵M,N在平行于y轴的直线上,点M的纵坐标为-2,点N的纵坐标为3,
则M,N两点间的距离为3-(-2)=5;(3)如图,作点A关于x轴的对称点A′,连接A′B与x轴交于点P,此时PA+PB最短设A′B的解析式为y=kx+b将A′(0,-4),B(4,2)代入y=kx+b得解得∴直线设A′B的解析式为令y=0得∴P(0,).∵PA′=PA∴PA+PB=PA′+PB=A′B=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国家开放大学《人际沟通与谈判技巧》期末考试备考试题及答案解析
- 2025年国家开放大学(电大)《基础物理学》期末考试备考试题及答案解析
- 尾牙宴策划方案试卷教案(2025-2026学年)
- 小学语文神话故事导读教案
- 2025年国家开放大学《营销原理》期末考试备考试题及答案解析
- 屋顶防水施工工程量计算方法
- 民营企业品牌建设战略规划书
- 2025-2030光纤测试仪器设备市场需求与技术创新方向研究报告
- 2025-2030光纤放大器技术迭代对长途通信的影响
- 2025-2030光纤声学传感器在工业设备预测性维护中的应用价值研究
- “十五五”城镇住房发展规划
- 借住单位宿舍协议书
- 合伙购买墓地协议书
- 医学综述研究进展汇报
- 2025年福建省泉州市中考二模历史试题(原卷版+解析版)
- DB3707T 120-2024无特定病原凡纳滨对虾种虾循环水养殖技术规范
- 锦州师专2025年体育教育专业职业技能考核大纲及题库
- 工人三检制培训
- “活动类”应用文框架+讲义-2025届高三英语二轮复习
- 保利(三亚)房地产开发有限公司交楼管理细则
- 江苏省徐州市铜山区2024-2025学年九年级上学期11月期中考试化学试题-
评论
0/150
提交评论